Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwlksf1clwwlklem Structured version   Visualization version   GIF version

Theorem clwlksf1clwwlklem 41275
Description: Lemma for clwlksf1clwwlk 41276. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalkS‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksf1clwwlklem ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝑊,𝑐   𝐶,𝑐   𝐹,𝑐   𝑦,𝐺   𝑦,𝑁   𝑈,𝑐,𝑦   𝑦,𝑊
Allowed substitution hints:   𝐴(𝑦,𝑐)   𝐵(𝑦,𝑐)   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem clwlksf1clwwlklem
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . . . . . . . 12 𝐴 = (1st𝑐)
2 clwlksfclwwlk.2 . . . . . . . . . . . 12 𝐵 = (2nd𝑐)
3 clwlksfclwwlk.c . . . . . . . . . . . 12 𝐶 = {𝑐 ∈ (ClWalkS‘𝐺) ∣ (#‘𝐴) = 𝑁}
4 clwlksfclwwlk.f . . . . . . . . . . . 12 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlksf1clwwlklem3 41274 . . . . . . . . . . 11 (𝑊𝐶 → (2nd𝑊) ∈ Word (Vtx‘𝐺))
61, 2, 3, 4clwlksf1clwwlklem3 41274 . . . . . . . . . . 11 (𝑈𝐶 → (2nd𝑈) ∈ Word (Vtx‘𝐺))
75, 6anim12ci 589 . . . . . . . . . 10 ((𝑊𝐶𝑈𝐶) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
87adantr 480 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
9 nnnn0 11176 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantl 481 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
111, 2, 3, 4clwlksf1clwwlklem1 41272 . . . . . . . . . . . 12 (𝑈𝐶𝑁 ≤ (#‘(2nd𝑈)))
1211adantl 481 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑈)))
1312adantr 480 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑈)))
141, 2, 3, 4clwlksf1clwwlklem1 41272 . . . . . . . . . . . 12 (𝑊𝐶𝑁 ≤ (#‘(2nd𝑊)))
1514adantr 480 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑊)))
1615adantr 480 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑊)))
1710, 13, 163jca 1235 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
188, 17jca 553 . . . . . . . 8 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
1918exp31 628 . . . . . . 7 (𝑊𝐶 → (𝑈𝐶 → (𝑁 ∈ ℕ → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))))
20193imp31 1250 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
2120adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
221, 2, 3, 4clwlksfclwwlk1hashn 41266 . . . . . . . . . 10 (𝑈𝐶 → (#‘(1st𝑈)) = 𝑁)
23223ad2ant2 1076 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑈)) = 𝑁)
2423opeq2d 4347 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑈))⟩ = ⟨0, 𝑁⟩)
2524oveq2d 6565 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑈) substr ⟨0, 𝑁⟩))
261, 2, 3, 4clwlksfclwwlk1hashn 41266 . . . . . . . . . 10 (𝑊𝐶 → (#‘(1st𝑊)) = 𝑁)
27263ad2ant3 1077 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑊)) = 𝑁)
2827opeq2d 4347 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑊))⟩ = ⟨0, 𝑁⟩)
2928oveq2d 6565 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
3025, 29eqeq12d 2625 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) ↔ ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩)))
3130biimpa 500 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
32 simpl 472 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
33 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3433, 33jca 553 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
35343ad2ant1 1075 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
3635adantl 481 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
37 3simpc 1053 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
3837adantl 481 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
39 swrdeq 13296 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
4032, 36, 38, 39syl3anc 1318 . . . . . 6 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
41 simpr 476 . . . . . 6 ((𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
4240, 41syl6bi 242 . . . . 5 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
4321, 31, 42sylc 63 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
44 lbfzo0 12375 . . . . . . . . 9 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
4544biimpri 217 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
46453ad2ant1 1075 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 0 ∈ (0..^𝑁))
4746adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 0 ∈ (0..^𝑁))
48 fveq2 6103 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘0))
49 fveq2 6103 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘0))
5048, 49eqeq12d 2625 . . . . . . 7 (𝑦 = 0 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5150rspcv 3278 . . . . . 6 (0 ∈ (0..^𝑁) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5247, 51syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
531, 2, 3, 4clwlksf1clwwlklem2 41273 . . . . . . . 8 (𝑈𝐶 → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
54533ad2ant2 1076 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
5554adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
561, 2, 3, 4clwlksf1clwwlklem2 41273 . . . . . . . 8 (𝑊𝐶 → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
57563ad2ant3 1077 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5857adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5955, 58eqeq12d 2625 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈)‘0) = ((2nd𝑊)‘0) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6052, 59sylibd 228 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6143, 60jcai 557 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
62 elnn0uz 11601 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
639, 62sylib 207 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
64633ad2ant1 1075 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 𝑁 ∈ (ℤ‘0))
6564adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ (ℤ‘0))
66 fzisfzounsn 12445 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6765, 66syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6867raleqdv 3121 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
69 simpl1 1057 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ ℕ)
70 fveq2 6103 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘𝑁))
71 fveq2 6103 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘𝑁))
7270, 71eqeq12d 2625 . . . . . 6 (𝑦 = 𝑁 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
7372ralunsn 4360 . . . . 5 (𝑁 ∈ ℕ → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7469, 73syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7568, 74bitrd 267 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7661, 75mpbird 246 . 2 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
7776ex 449 1 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cun 3538  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  0cc0 9815  cle 9954  cn 10897  0cn0 11169  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   substr csubstr 13150  Vtxcvtx 25673  ClWalkScclwlks 40976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-substr 13158  df-1wlks 40800  df-clwlks 40977
This theorem is referenced by:  clwlksf1clwwlk  41276
  Copyright terms: Public domain W3C validator