Proof of Theorem clwlkclwwlk2
Step | Hyp | Ref
| Expression |
1 | | lswccats1fst 13264 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → ( lastS ‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
2 | 1 | 3adant1 1072 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → ( lastS ‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
3 | 2 | biantrurd 528 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalkS‘𝐺)
↔ (( lastS ‘(𝑃
++ 〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalkS‘𝐺)))) |
4 | | simpl 472 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝑃 ∈ Word 𝑉) |
5 | | wrdsymb1 13197 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (𝑃‘0) ∈ 𝑉) |
6 | | wrdlenccats1lenm1 13252 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘0) ∈ 𝑉) → (#‘𝑃) = ((#‘(𝑃 ++ 〈“(𝑃‘0)”〉)) −
1)) |
7 | 4, 5, 6 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝑃) = ((#‘(𝑃 ++ 〈“(𝑃‘0)”〉)) −
1)) |
8 | 7 | eqcomd 2616 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → ((#‘(𝑃 ++ 〈“(𝑃‘0)”〉)) − 1) =
(#‘𝑃)) |
9 | 8 | opeq2d 4347 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 〈0, ((#‘(𝑃 ++ 〈“(𝑃‘0)”〉)) −
1)〉 = 〈0, (#‘𝑃)〉) |
10 | 9 | oveq2d 6565 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉) =
((𝑃 ++ 〈“(𝑃‘0)”〉) substr
〈0, (#‘𝑃)〉)) |
11 | 5 | s1cld 13236 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 〈“(𝑃‘0)”〉 ∈ Word 𝑉) |
12 | | eqidd 2611 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝑃) = (#‘𝑃)) |
13 | | swrdccatid 13348 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉 ∧ (#‘𝑃) = (#‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
(#‘𝑃)〉) = 𝑃) |
14 | 4, 11, 12, 13 | syl3anc 1318 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
(#‘𝑃)〉) = 𝑃) |
15 | 10, 14 | eqtr2d 2645 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝑃 = ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) −
1)〉)) |
16 | 15 | 3adant1 1072 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝑃 = ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) −
1)〉)) |
17 | 16 | eleq1d 2672 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (𝑃 ∈ (ClWWalkS‘𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalkS‘𝐺))) |
18 | | simp1 1054 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝐺 ∈ USPGraph ) |
19 | | simp2 1055 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝑃 ∈ Word 𝑉) |
20 | 11 | 3adant1 1072 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 〈“(𝑃‘0)”〉 ∈ Word 𝑉) |
21 | | ccatcl 13212 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
22 | 19, 20, 21 | syl2anc 691 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
23 | | lencl 13179 |
. . . . . . . 8
⊢ (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈
ℕ0) |
24 | | 1e2m1 11013 |
. . . . . . . . . . 11
⊢ 1 = (2
− 1) |
25 | 24 | a1i 11 |
. . . . . . . . . 10
⊢
((#‘𝑃) ∈
ℕ0 → 1 = (2 − 1)) |
26 | 25 | breq1d 4593 |
. . . . . . . . 9
⊢
((#‘𝑃) ∈
ℕ0 → (1 ≤ (#‘𝑃) ↔ (2 − 1) ≤ (#‘𝑃))) |
27 | | 2re 10967 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢
((#‘𝑃) ∈
ℕ0 → 2 ∈ ℝ) |
29 | | 1red 9934 |
. . . . . . . . . 10
⊢
((#‘𝑃) ∈
ℕ0 → 1 ∈ ℝ) |
30 | | nn0re 11178 |
. . . . . . . . . 10
⊢
((#‘𝑃) ∈
ℕ0 → (#‘𝑃) ∈ ℝ) |
31 | 28, 29, 30 | lesubaddd 10503 |
. . . . . . . . 9
⊢
((#‘𝑃) ∈
ℕ0 → ((2 − 1) ≤ (#‘𝑃) ↔ 2 ≤ ((#‘𝑃) + 1))) |
32 | 26, 31 | bitrd 267 |
. . . . . . . 8
⊢
((#‘𝑃) ∈
ℕ0 → (1 ≤ (#‘𝑃) ↔ 2 ≤ ((#‘𝑃) + 1))) |
33 | 23, 32 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ Word 𝑉 → (1 ≤ (#‘𝑃) ↔ 2 ≤ ((#‘𝑃) + 1))) |
34 | 33 | biimpa 500 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 2 ≤ ((#‘𝑃) + 1)) |
35 | | s1len 13238 |
. . . . . . 7
⊢
(#‘〈“(𝑃‘0)”〉) = 1 |
36 | 35 | oveq2i 6560 |
. . . . . 6
⊢
((#‘𝑃) +
(#‘〈“(𝑃‘0)”〉)) = ((#‘𝑃) + 1) |
37 | 34, 36 | syl6breqr 4625 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 2 ≤ ((#‘𝑃) + (#‘〈“(𝑃‘0)”〉))) |
38 | 37 | 3adant1 1072 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 2 ≤ ((#‘𝑃) + (#‘〈“(𝑃‘0)”〉))) |
39 | 4, 11 | jca 553 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉)) |
40 | 39 | 3adant1 1072 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉)) |
41 | | ccatlen 13213 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉) → (#‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((#‘𝑃) +
(#‘〈“(𝑃‘0)”〉))) |
42 | 40, 41 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = ((#‘𝑃) + (#‘〈“(𝑃‘0)”〉))) |
43 | 38, 42 | breqtrrd 4611 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 2 ≤ (#‘(𝑃 ++ 〈“(𝑃‘0)”〉))) |
44 | | clwlkclwwlk.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
45 | | clwlkclwwlk.e |
. . . 4
⊢ 𝐸 = (iEdg‘𝐺) |
46 | 44, 45 | clwlkclwwlk 41211 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ (𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word 𝑉 ∧ 2 ≤
(#‘(𝑃 ++
〈“(𝑃‘0)”〉))) →
(∃𝑓 𝑓(ClWalkS‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔ (( lastS
‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalkS‘𝐺)))) |
47 | 18, 22, 43, 46 | syl3anc 1318 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∃𝑓 𝑓(ClWalkS‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔ (( lastS
‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) substr 〈0,
((#‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalkS‘𝐺)))) |
48 | 3, 17, 47 | 3bitr4rd 300 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∃𝑓 𝑓(ClWalkS‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔ 𝑃 ∈ (ClWWalkS‘𝐺))) |