Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneiel2 Structured version   Visualization version   GIF version

Theorem clsneiel2 37427
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneiel.x (𝜑𝑋𝐵)
clsneiel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneiel2 (𝜑 → (𝑋 ∈ (𝐾‘(𝐵𝑆)) ↔ ¬ 𝑆 ∈ (𝑁𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem clsneiel2
StepHypRef Expression
1 clsnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 clsnei.p . . 3 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
3 clsnei.d . . 3 𝐷 = (𝑃𝐵)
4 clsnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
5 clsnei.h . . 3 𝐻 = (𝐹𝐷)
6 clsnei.r . . 3 (𝜑𝐾𝐻𝑁)
7 clsneiel.x . . 3 (𝜑𝑋𝐵)
83, 5, 6clsneircomplex 37421 . . 3 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
91, 2, 3, 4, 5, 6, 7, 8clsneiel1 37426 . 2 (𝜑 → (𝑋 ∈ (𝐾‘(𝐵𝑆)) ↔ ¬ (𝐵 ∖ (𝐵𝑆)) ∈ (𝑁𝑋)))
10 clsneiel.s . . . . . 6 (𝜑𝑆 ∈ 𝒫 𝐵)
1110elpwid 4118 . . . . 5 (𝜑𝑆𝐵)
12 dfss4 3820 . . . . 5 (𝑆𝐵 ↔ (𝐵 ∖ (𝐵𝑆)) = 𝑆)
1311, 12sylib 207 . . . 4 (𝜑 → (𝐵 ∖ (𝐵𝑆)) = 𝑆)
1413eleq1d 2672 . . 3 (𝜑 → ((𝐵 ∖ (𝐵𝑆)) ∈ (𝑁𝑋) ↔ 𝑆 ∈ (𝑁𝑋)))
1514notbid 307 . 2 (𝜑 → (¬ (𝐵 ∖ (𝐵𝑆)) ∈ (𝑁𝑋) ↔ ¬ 𝑆 ∈ (𝑁𝑋)))
169, 15bitrd 267 1 (𝜑 → (𝑋 ∈ (𝐾‘(𝐵𝑆)) ↔ ¬ 𝑆 ∈ (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccom 5042  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  clsneifv3  37428
  Copyright terms: Public domain W3C validator