Step | Hyp | Ref
| Expression |
1 | | climsuselem1.1 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | 1 | eleq2i 2680 |
. . . 4
⊢ (𝐾 ∈ 𝑍 ↔ 𝐾 ∈ (ℤ≥‘𝑀)) |
3 | 2 | biimpi 205 |
. . 3
⊢ (𝐾 ∈ 𝑍 → 𝐾 ∈ (ℤ≥‘𝑀)) |
4 | 3 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
5 | | simpl 472 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝜑) |
6 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = 𝑀 → (𝐼‘𝑗) = (𝐼‘𝑀)) |
7 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑀)) |
8 | 6, 7 | eleq12d 2682 |
. . . 4
⊢ (𝑗 = 𝑀 → ((𝐼‘𝑗) ∈ (ℤ≥‘𝑗) ↔ (𝐼‘𝑀) ∈ (ℤ≥‘𝑀))) |
9 | 8 | imbi2d 329 |
. . 3
⊢ (𝑗 = 𝑀 → ((𝜑 → (𝐼‘𝑗) ∈ (ℤ≥‘𝑗)) ↔ (𝜑 → (𝐼‘𝑀) ∈ (ℤ≥‘𝑀)))) |
10 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = 𝑘 → (𝐼‘𝑗) = (𝐼‘𝑘)) |
11 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = 𝑘 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑘)) |
12 | 10, 11 | eleq12d 2682 |
. . . 4
⊢ (𝑗 = 𝑘 → ((𝐼‘𝑗) ∈ (ℤ≥‘𝑗) ↔ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) |
13 | 12 | imbi2d 329 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝜑 → (𝐼‘𝑗) ∈ (ℤ≥‘𝑗)) ↔ (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)))) |
14 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (𝐼‘𝑗) = (𝐼‘(𝑘 + 1))) |
15 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) →
(ℤ≥‘𝑗) = (ℤ≥‘(𝑘 + 1))) |
16 | 14, 15 | eleq12d 2682 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → ((𝐼‘𝑗) ∈ (ℤ≥‘𝑗) ↔ (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1)))) |
17 | 16 | imbi2d 329 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 → (𝐼‘𝑗) ∈ (ℤ≥‘𝑗)) ↔ (𝜑 → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1))))) |
18 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = 𝐾 → (𝐼‘𝑗) = (𝐼‘𝐾)) |
19 | | fveq2 6103 |
. . . . 5
⊢ (𝑗 = 𝐾 → (ℤ≥‘𝑗) =
(ℤ≥‘𝐾)) |
20 | 18, 19 | eleq12d 2682 |
. . . 4
⊢ (𝑗 = 𝐾 → ((𝐼‘𝑗) ∈ (ℤ≥‘𝑗) ↔ (𝐼‘𝐾) ∈ (ℤ≥‘𝐾))) |
21 | 20 | imbi2d 329 |
. . 3
⊢ (𝑗 = 𝐾 → ((𝜑 → (𝐼‘𝑗) ∈ (ℤ≥‘𝑗)) ↔ (𝜑 → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾)))) |
22 | | climsuselem1.3 |
. . . . 5
⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) |
23 | 22, 1 | syl6eleq 2698 |
. . . 4
⊢ (𝜑 → (𝐼‘𝑀) ∈ (ℤ≥‘𝑀)) |
24 | 23 | a1i 11 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝐼‘𝑀) ∈ (ℤ≥‘𝑀))) |
25 | | simpr 476 |
. . . . 5
⊢ (((𝑘 ∈
(ℤ≥‘𝑀) ∧ (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) ∧ 𝜑) → 𝜑) |
26 | | simpll 786 |
. . . . 5
⊢ (((𝑘 ∈
(ℤ≥‘𝑀) ∧ (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) ∧ 𝜑) → 𝑘 ∈ (ℤ≥‘𝑀)) |
27 | | simplr 788 |
. . . . . 6
⊢ (((𝑘 ∈
(ℤ≥‘𝑀) ∧ (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) ∧ 𝜑) → (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) |
28 | 25, 27 | mpd 15 |
. . . . 5
⊢ (((𝑘 ∈
(ℤ≥‘𝑀) ∧ (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) ∧ 𝜑) → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) |
29 | | eluzelz 11573 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
30 | 29 | 3ad2ant2 1076 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → 𝑘 ∈ ℤ) |
31 | 30 | peano2zd 11361 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝑘 + 1) ∈ ℤ) |
32 | 31 | zred 11358 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝑘 + 1) ∈ ℝ) |
33 | | eluzelre 11574 |
. . . . . . . . 9
⊢ ((𝐼‘𝑘) ∈ (ℤ≥‘𝑘) → (𝐼‘𝑘) ∈ ℝ) |
34 | 33 | 3ad2ant3 1077 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝐼‘𝑘) ∈ ℝ) |
35 | | 1red 9934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → 1 ∈
ℝ) |
36 | 34, 35 | readdcld 9948 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → ((𝐼‘𝑘) + 1) ∈ ℝ) |
37 | 1 | eqimss2i 3623 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑀) ⊆ 𝑍 |
38 | 37 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘𝑀) ⊆ 𝑍) |
39 | 38 | sseld 3567 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍)) |
40 | 39 | imdistani 722 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝜑 ∧ 𝑘 ∈ 𝑍)) |
41 | | climsuselem1.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1))) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1))) |
43 | 42 | 3adant3 1074 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1))) |
44 | | eluzelz 11573 |
. . . . . . . . 9
⊢ ((𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1)) → (𝐼‘(𝑘 + 1)) ∈ ℤ) |
45 | 43, 44 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℤ) |
46 | 45 | zred 11358 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℝ) |
47 | 30 | zred 11358 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → 𝑘 ∈ ℝ) |
48 | | eluzle 11576 |
. . . . . . . . 9
⊢ ((𝐼‘𝑘) ∈ (ℤ≥‘𝑘) → 𝑘 ≤ (𝐼‘𝑘)) |
49 | 48 | 3ad2ant3 1077 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → 𝑘 ≤ (𝐼‘𝑘)) |
50 | 47, 34, 35, 49 | leadd1dd 10520 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝑘 + 1) ≤ ((𝐼‘𝑘) + 1)) |
51 | | eluzle 11576 |
. . . . . . . 8
⊢ ((𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1)) → ((𝐼‘𝑘) + 1) ≤ (𝐼‘(𝑘 + 1))) |
52 | 43, 51 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → ((𝐼‘𝑘) + 1) ≤ (𝐼‘(𝑘 + 1))) |
53 | 32, 36, 46, 50, 52 | letrd 10073 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))) |
54 | | eluz 11577 |
. . . . . . 7
⊢ (((𝑘 + 1) ∈ ℤ ∧
(𝐼‘(𝑘 + 1)) ∈ ℤ) →
((𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))) |
55 | 31, 45, 54 | syl2anc 691 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → ((𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))) |
56 | 53, 55 | mpbird 246 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1))) |
57 | 25, 26, 28, 56 | syl3anc 1318 |
. . . 4
⊢ (((𝑘 ∈
(ℤ≥‘𝑀) ∧ (𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘))) ∧ 𝜑) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1))) |
58 | 57 | exp31 628 |
. . 3
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝐼‘𝑘) ∈ (ℤ≥‘𝑘)) → (𝜑 → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘(𝑘 + 1))))) |
59 | 9, 13, 17, 21, 24, 58 | uzind4 11622 |
. 2
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾))) |
60 | 4, 5, 59 | sylc 63 |
1
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾)) |