Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrecf Structured version   Visualization version   GIF version

Theorem climrecf 38676
Description: A version of climrec 38670 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrecf.1 𝑘𝜑
climrecf.2 𝑘𝐺
climrecf.3 𝑘𝐻
climrecf.4 𝑍 = (ℤ𝑀)
climrecf.5 (𝜑𝑀 ∈ ℤ)
climrecf.6 (𝜑𝐺𝐴)
climrecf.7 (𝜑𝐴 ≠ 0)
climrecf.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrecf.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrecf.10 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrecf (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrecf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecf.4 . 2 𝑍 = (ℤ𝑀)
2 climrecf.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climrecf.6 . 2 (𝜑𝐺𝐴)
4 climrecf.7 . 2 (𝜑𝐴 ≠ 0)
5 climrecf.1 . . . . 5 𝑘𝜑
6 nfv 1830 . . . . 5 𝑘 𝑗𝑍
75, 6nfan 1816 . . . 4 𝑘(𝜑𝑗𝑍)
8 climrecf.2 . . . . . 6 𝑘𝐺
9 nfcv 2751 . . . . . 6 𝑘𝑗
108, 9nffv 6110 . . . . 5 𝑘(𝐺𝑗)
1110nfel1 2765 . . . 4 𝑘(𝐺𝑗) ∈ (ℂ ∖ {0})
127, 11nfim 1813 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
13 eleq1 2676 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1413anbi2d 736 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
15 fveq2 6103 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
1615eleq1d 2672 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺𝑗) ∈ (ℂ ∖ {0})))
1714, 16imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))))
18 climrecf.8 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
1912, 17, 18chvar 2250 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ (ℂ ∖ {0}))
20 climrecf.3 . . . . . 6 𝑘𝐻
2120, 9nffv 6110 . . . . 5 𝑘(𝐻𝑗)
22 nfcv 2751 . . . . . 6 𝑘1
23 nfcv 2751 . . . . . 6 𝑘 /
2422, 23, 10nfov 6575 . . . . 5 𝑘(1 / (𝐺𝑗))
2521, 24nfeq 2762 . . . 4 𝑘(𝐻𝑗) = (1 / (𝐺𝑗))
267, 25nfim 1813 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
27 fveq2 6103 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
2815oveq2d 6565 . . . . 5 (𝑘 = 𝑗 → (1 / (𝐺𝑘)) = (1 / (𝐺𝑗)))
2927, 28eqeq12d 2625 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = (1 / (𝐺𝑘)) ↔ (𝐻𝑗) = (1 / (𝐺𝑗))))
3014, 29imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))))
31 climrecf.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
3226, 30, 31chvar 2250 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = (1 / (𝐺𝑗)))
33 climrecf.10 . 2 (𝜑𝐻𝑊)
341, 2, 3, 4, 19, 32, 33climrec 38670 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  wne 2780  cdif 3537  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   / cdiv 10563  cz 11254  cuz 11563  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  climdivf  38679
  Copyright terms: Public domain W3C validator