Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climleltrp Structured version   Visualization version   GIF version

Theorem climleltrp 38743
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climleltrp.k 𝑘𝜑
climleltrp.f 𝑘𝐹
climleltrp.z 𝑍 = (ℤ𝑀)
climleltrp.n (𝜑𝑁𝑍)
climleltrp.r ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
climleltrp.a (𝜑𝐹𝐴)
climleltrp.c (𝜑𝐶 ∈ ℝ)
climleltrp.l (𝜑𝐴𝐶)
climleltrp.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
climleltrp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑁,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climleltrp
StepHypRef Expression
1 climleltrp.n . . . . 5 (𝜑𝑁𝑍)
2 climleltrp.z . . . . 5 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2698 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 uzss 11584 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
65, 2syl6sseqr 3615 . 2 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
7 climleltrp.k . . . 4 𝑘𝜑
8 climleltrp.f . . . 4 𝑘𝐹
9 uzssz 11583 . . . . 5 (ℤ𝑀) ⊆ ℤ
109, 3sseldi 3566 . . . 4 (𝜑𝑁 ∈ ℤ)
11 eqid 2610 . . . 4 (ℤ𝑁) = (ℤ𝑁)
12 climleltrp.a . . . 4 (𝜑𝐹𝐴)
13 eqidd 2611 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐹𝑘))
14 climleltrp.x . . . 4 (𝜑𝑋 ∈ ℝ+)
157, 8, 10, 11, 12, 13, 14clim2d 38740 . . 3 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
16 nfv 1830 . . . . . 6 𝑘 𝑗 ∈ (ℤ𝑁)
177, 16nfan 1816 . . . . 5 𝑘(𝜑𝑗 ∈ (ℤ𝑁))
18 simplll 794 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝜑)
19 uzss 11584 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑁) → (ℤ𝑗) ⊆ (ℤ𝑁))
2019ad2antlr 759 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ (ℤ𝑁))
21 simpr 476 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
2220, 21sseldd 3569 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑁))
2322adantr 480 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑘 ∈ (ℤ𝑁))
24 simpr 476 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
25 climleltrp.r . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2613, 25eqeltrd 2688 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2726adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℝ)
28 climcl 14078 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2912, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ∈ ℂ)
3126recnd 9947 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
3230, 31pncan3d 10274 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐴 + ((𝐹𝑘) − 𝐴)) = (𝐹𝑘))
3332eqcomd 2616 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3433adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3534, 27eqeltrrd 2689 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
36 climleltrp.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
3736ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐶 ∈ ℝ)
387, 8, 11, 10, 12, 25climreclf 38731 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3938ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℝ)
4027, 39resubcld 10337 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
4137, 40readdcld 9948 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
4214rpred 11748 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4342ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑋 ∈ ℝ)
4437, 43readdcld 9948 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + 𝑋) ∈ ℝ)
45 climleltrp.l . . . . . . . . . . . . 13 (𝜑𝐴𝐶)
4645ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴𝐶)
4739, 37, 40, 46leadd1dd 10520 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ≤ (𝐶 + ((𝐹𝑘) − 𝐴)))
4831adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℂ)
4930adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℂ)
5048, 49subcld 10271 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
5150abscld 14023 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
5240leabsd 14001 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ≤ (abs‘((𝐹𝑘) − 𝐴)))
53 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
5440, 51, 43, 52, 53lelttrd 10074 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) < 𝑋)
5540, 43, 37, 54ltadd2dd 10075 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5635, 41, 44, 47, 55lelttrd 10074 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5734, 56eqbrtrd 4605 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) < (𝐶 + 𝑋))
5827, 57jca 553 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
5918, 23, 24, 58syl21anc 1317 . . . . . . 7 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6059adantrl 748 . . . . . 6 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6160ex 449 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6217, 61ralimdaa 2941 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑁)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6362reximdva 3000 . . 3 (𝜑 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6415, 63mpd 15 . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
65 ssrexv 3630 . 2 ((ℤ𝑁) ⊆ 𝑍 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
666, 64, 65sylc 63 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  +crp 11708  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068
This theorem is referenced by:  smflimlem2  39658
  Copyright terms: Public domain W3C validator