Step | Hyp | Ref
| Expression |
1 | | climrel 14071 |
. . . . 5
⊢ Rel
⇝ |
2 | 1 | brrelex2i 5083 |
. . . 4
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ V) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐹 ⇝ 𝐴 → 𝐴 ∈ V)) |
4 | | elex 3185 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 ∈ V) |
5 | 4 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V) |
6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)) |
7 | | climf2.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
8 | | simpr 476 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) |
9 | 8 | eleq1d 2672 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
10 | | nfv 1830 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑓 = 𝐹 ∧ 𝑦 = 𝐴) |
11 | | climf2.nf |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐹 |
12 | 11 | nfeq2 2766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑓 = 𝐹 |
13 | | nfv 1830 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑦 = 𝐴 |
14 | 12, 13 | nfan 1816 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑓 = 𝐹 ∧ 𝑦 = 𝐴) |
15 | | fveq1 6102 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) |
16 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (𝑓‘𝑘) = (𝐹‘𝑘)) |
17 | 16 | eleq1d 2672 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) ∈ ℂ ↔ (𝐹‘𝑘) ∈ ℂ)) |
18 | | oveq12 6558 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑘) = (𝐹‘𝑘) ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) |
19 | 15, 18 | sylan 487 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑓‘𝑘) − 𝑦) = ((𝐹‘𝑘) − 𝐴)) |
20 | 19 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (abs‘((𝑓‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑘) − 𝐴))) |
21 | 20 | breq1d 4593 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) |
22 | 17, 21 | anbi12d 743 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
23 | 14, 22 | ralbid 2966 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
24 | 23 | rexbidv 3034 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
25 | 10, 24 | ralbid 2966 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
26 | 9, 25 | anbi12d 743 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
27 | | df-clim 14067 |
. . . . . 6
⊢ ⇝
= {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
28 | 26, 27 | brabga 4914 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
29 | 28 | ex 449 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) |
30 | 7, 29 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ∈ V → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))))) |
31 | 3, 6, 30 | pm5.21ndd 368 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
32 | | climf2.1 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
33 | | eluzelz 11573 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → 𝑘 ∈ ℤ) |
34 | | climf2.fv |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) |
35 | 34 | eleq1d 2672 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝐹‘𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
36 | 34 | oveq1d 6564 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝐹‘𝑘) − 𝐴) = (𝐵 − 𝐴)) |
37 | 36 | fveq2d 6107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(𝐵 − 𝐴))) |
38 | 37 | breq1d 4593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
39 | 35, 38 | anbi12d 743 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
40 | 33, 39 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
41 | 32, 40 | ralbida 2965 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
42 | 41 | rexbidv 3034 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
43 | 42 | ralbidv 2969 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
44 | 43 | anbi2d 736 |
. 2
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
45 | 31, 44 | bitrd 267 |
1
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |