MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1 Structured version   Visualization version   GIF version

Theorem climcn1 14170
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1 𝑍 = (ℤ𝑀)
climcn1.2 (𝜑𝑀 ∈ ℤ)
climcn1.3 (𝜑𝐴𝐵)
climcn1.4 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
climcn1.5 (𝜑𝐺𝐴)
climcn1.6 (𝜑𝐻𝑊)
climcn1.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
climcn1.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
climcn1.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
climcn1 (𝜑𝐻 ⇝ (𝐹𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝐵,𝑘,𝑧   𝑘,𝐺,𝑦,𝑧   𝑘,𝐻,𝑥   𝑘,𝐹,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐺(𝑥)   𝐻(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2 climcn1.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 climcn1.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
43adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
5 simpr 476 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
6 eqidd 2611 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn1.5 . . . . . . . . 9 (𝜑𝐺𝐴)
87adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 14090 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
102uztrn2 11581 . . . . . . . . . . . 12 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
11 climcn1.8 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
1211adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
13 oveq1 6556 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑘) → (𝑧𝐴) = ((𝐺𝑘) − 𝐴))
1413fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘(𝑧𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
1514breq1d 4593 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
16 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐺𝑘) → (𝐹𝑧) = (𝐹‘(𝐺𝑘)))
1716oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹‘(𝐺𝑘)) − (𝐹𝐴)))
1817fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘((𝐹𝑧) − (𝐹𝐴))) = (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))))
1918breq1d 4593 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥 ↔ (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2015, 19imbi12d 333 . . . . . . . . . . . . . . 15 (𝑧 = (𝐺𝑘) → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
2120rspcva 3280 . . . . . . . . . . . . . 14 (((𝐺𝑘) ∈ 𝐵 ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2212, 21sylan 487 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2322an32s 842 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑘𝑍) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2410, 23sylan2 490 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2524anassrs 678 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2625ralimdva 2945 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2726reximdva 3000 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2827ex 449 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
299, 28mpid 43 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
3029rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
3130adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
321, 31mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
3332ralrimiva 2949 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
34 climcn1.6 . . 3 (𝜑𝐻𝑊)
35 climcn1.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
36 climcn1.3 . . . 4 (𝜑𝐴𝐵)
37 climcn1.4 . . . . 5 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
3837ralrimiva 2949 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
39 fveq2 6103 . . . . . 6 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
4039eleq1d 2672 . . . . 5 (𝑧 = 𝐴 → ((𝐹𝑧) ∈ ℂ ↔ (𝐹𝐴) ∈ ℂ))
4140rspcv 3278 . . . 4 (𝐴𝐵 → (∀𝑧𝐵 (𝐹𝑧) ∈ ℂ → (𝐹𝐴) ∈ ℂ))
4236, 38, 41sylc 63 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
4338adantr 480 . . . 4 ((𝜑𝑘𝑍) → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
4416eleq1d 2672 . . . . 5 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) ∈ ℂ ↔ (𝐹‘(𝐺𝑘)) ∈ ℂ))
4544rspcv 3278 . . . 4 ((𝐺𝑘) ∈ 𝐵 → (∀𝑧𝐵 (𝐹𝑧) ∈ ℂ → (𝐹‘(𝐺𝑘)) ∈ ℂ))
4611, 43, 45sylc 63 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝐺𝑘)) ∈ ℂ)
472, 3, 34, 35, 42, 46clim2c 14084 . 2 (𝜑 → (𝐻 ⇝ (𝐹𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
4833, 47mpbird 246 1 (𝜑𝐻 ⇝ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813   < clt 9953  cmin 10145  cz 11254  cuz 11563  +crp 11708  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-clim 14067
This theorem is referenced by:  climcn1lem  14181  climcncf  22511  climrec  38670
  Copyright terms: Public domain W3C validator