Proof of Theorem clim2f
Step | Hyp | Ref
| Expression |
1 | | nf |
. . 3
⊢
Ⅎ𝑘𝐹 |
2 | | clim2f.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
3 | | eqidd 2611 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
4 | 1, 2, 3 | climf 38689 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
5 | | clim2f.z |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | 5 | uztrn2 11581 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
7 | | clim2f.b |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
8 | 7 | eleq1d 2672 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
9 | 7 | oveq1d 6564 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − 𝐴) = (𝐵 − 𝐴)) |
10 | 9 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(𝐵 − 𝐴))) |
11 | 10 | breq1d 4593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
12 | 8, 11 | anbi12d 743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
13 | 6, 12 | sylan2 490 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
14 | 13 | anassrs 678 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
15 | 14 | ralbidva 2968 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
16 | 15 | rexbidva 3031 |
. . . . 5
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
17 | | clim2f.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
18 | 5 | rexuz3 13936 |
. . . . . 6
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
20 | 16, 19 | bitr3d 269 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
21 | 20 | ralbidv 2969 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
22 | 21 | anbi2d 736 |
. 2
⊢ (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
23 | 4, 22 | bitr4d 270 |
1
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |