Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel3 Structured version   Visualization version   GIF version

Theorem clel3 3311
 Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel3.1 𝐵 ∈ V
Assertion
Ref Expression
clel3 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel3
StepHypRef Expression
1 clel3.1 . 2 𝐵 ∈ V
2 clel3g 3310 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175 This theorem is referenced by:  unipr  4385  brcup  31216  brcap  31217
 Copyright terms: Public domain W3C validator