MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldval Structured version   Visualization version   GIF version

Theorem cldval 20637
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldval (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cldval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 20536 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 4776 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 rabexg 4739 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
6 unieq 4380 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1syl6eqr 2662 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4113 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
97difeq1d 3689 . . . . 5 (𝑗 = 𝐽 → ( 𝑗𝑥) = (𝑋𝑥))
10 eleq12 2678 . . . . 5 ((( 𝑗𝑥) = (𝑋𝑥) ∧ 𝑗 = 𝐽) → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
119, 10mpancom 700 . . . 4 (𝑗 = 𝐽 → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
128, 11rabeqbidv 3168 . . 3 (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
13 df-cld 20633 . . 3 Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
1412, 13fvmptg 6189 . 2 ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
155, 14mpdan 699 1 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  𝒫 cpw 4108   cuni 4372  cfv 5804  Topctop 20517  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-top 20521  df-cld 20633
This theorem is referenced by:  iscld  20641  mretopd  20706
  Copyright terms: Public domain W3C validator