Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clatp0cl | Structured version Visualization version GIF version |
Description: The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
Ref | Expression |
---|---|
clatp0cl.b | ⊢ 𝐵 = (Base‘𝑊) |
clatp0cl.0 | ⊢ 0 = (0.‘𝑊) |
Ref | Expression |
---|---|
clatp0cl | ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatp0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | eqid 2610 | . . 3 ⊢ (glb‘𝑊) = (glb‘𝑊) | |
3 | clatp0cl.0 | . . 3 ⊢ 0 = (0.‘𝑊) | |
4 | 1, 2, 3 | p0val 16864 | . 2 ⊢ (𝑊 ∈ CLat → 0 = ((glb‘𝑊)‘𝐵)) |
5 | ssid 3587 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
6 | 1, 2 | clatglbcl 16937 | . . 3 ⊢ ((𝑊 ∈ CLat ∧ 𝐵 ⊆ 𝐵) → ((glb‘𝑊)‘𝐵) ∈ 𝐵) |
7 | 5, 6 | mpan2 703 | . 2 ⊢ (𝑊 ∈ CLat → ((glb‘𝑊)‘𝐵) ∈ 𝐵) |
8 | 4, 7 | eqeltrd 2688 | 1 ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ‘cfv 5804 Basecbs 15695 glbcglb 16766 0.cp0 16860 CLatccla 16930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-lub 16797 df-glb 16798 df-p0 16862 df-clat 16931 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |