Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > class2seteq | Structured version Visualization version GIF version |
Description: Equality theorem based on class2set 4758. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
Ref | Expression |
---|---|
class2seteq | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | ax-1 6 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | |
3 | 2 | ralrimiv 2948 | . . . 4 ⊢ (𝐴 ∈ V → ∀𝑥 ∈ 𝐴 𝐴 ∈ V) |
4 | rabid2 3096 | . . . 4 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 223 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V}) |
6 | 5 | eqcomd 2616 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-ral 2901 df-rab 2905 df-v 3175 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |