MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cic Structured version   Visualization version   GIF version

Theorem cic 16282
Description: Objects 𝑋 and 𝑌 in a category are isomorphic provided that there is an isomorphism 𝑓:𝑋𝑌, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cic.i 𝐼 = (Iso‘𝐶)
cic.b 𝐵 = (Base‘𝐶)
cic.c (𝜑𝐶 ∈ Cat)
cic.x (𝜑𝑋𝐵)
cic.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)

Proof of Theorem cic
StepHypRef Expression
1 cic.i . . 3 𝐼 = (Iso‘𝐶)
2 cic.b . . 3 𝐵 = (Base‘𝐶)
3 cic.c . . 3 (𝜑𝐶 ∈ Cat)
4 cic.x . . 3 (𝜑𝑋𝐵)
5 cic.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5brcic 16281 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))
7 n0 3890 . 2 ((𝑋𝐼𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))
86, 7syl6bb 275 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wex 1695  wcel 1977  wne 2780  c0 3874   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  Catccat 16148  Isociso 16229  𝑐 ccic 16278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-supp 7183  df-inv 16231  df-iso 16232  df-cic 16279
This theorem is referenced by:  brcici  16283  cicsym  16287  cictr  16288  initoeu1w  16485  initoeu2  16489  termoeu1w  16492  nzerooringczr  41864
  Copyright terms: Public domain W3C validator