Step | Hyp | Ref
| Expression |
1 | | simpl 472 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑁 ∈ Fin) |
2 | | simpr 476 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
3 | | crngring 18381 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
4 | | chp0mat.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
5 | 4 | matring 20068 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
6 | 3, 5 | sylan2 490 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
7 | | ringgrp 18375 |
. . . 4
⊢ (𝐴 ∈ Ring → 𝐴 ∈ Grp) |
8 | | eqid 2610 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
9 | | chp0mat.0 |
. . . . 5
⊢ 0 =
(0g‘𝐴) |
10 | 8, 9 | grpidcl 17273 |
. . . 4
⊢ (𝐴 ∈ Grp → 0 ∈
(Base‘𝐴)) |
11 | 6, 7, 10 | 3syl 18 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 ∈
(Base‘𝐴)) |
12 | | eqid 2610 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
13 | 4, 12 | mat0op 20044 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
14 | 9, 13 | syl5eq 2656 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
15 | 3, 14 | sylan2 490 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
16 | 15 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
17 | | eqidd 2611 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (0g‘𝑅) = (0g‘𝑅)) |
18 | | simpl 472 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
19 | 18 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
20 | | simpr 476 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
21 | 20 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
22 | | fvex 6113 |
. . . . . . 7
⊢
(0g‘𝑅) ∈ V |
23 | 22 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (0g‘𝑅) ∈ V) |
24 | 16, 17, 19, 21, 23 | ovmpt2d 6686 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 0 𝑗) = (0g‘𝑅)) |
25 | 24 | a1d 25 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖 0 𝑗) = (0g‘𝑅))) |
26 | 25 | ralrimivva 2954 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖 0 𝑗) = (0g‘𝑅))) |
27 | | chp0mat.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
28 | | chp0mat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
29 | | eqid 2610 |
. . . 4
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
30 | | chp0mat.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
31 | | chp0mat.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑃) |
32 | | eqid 2610 |
. . . 4
⊢
(-g‘𝑃) = (-g‘𝑃) |
33 | 27, 28, 4, 29, 8, 30, 12, 31, 32 | chpdmat 20465 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 0 ∈
(Base‘𝐴)) ∧
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖 0 𝑗) = (0g‘𝑅))) → (𝐶‘ 0 ) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))))) |
34 | 1, 2, 11, 26, 33 | syl31anc 1321 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))))) |
35 | 15 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
36 | | eqidd 2611 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) ∧ (𝑥 = 𝑘 ∧ 𝑦 = 𝑘)) → (0g‘𝑅) = (0g‘𝑅)) |
37 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
38 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
39 | 35, 36, 37, 37, 38 | ovmpt2d 6686 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑘 0 𝑘) = (0g‘𝑅)) |
40 | 39 | fveq2d 6107 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑘 0 𝑘)) = ((algSc‘𝑃)‘(0g‘𝑅))) |
41 | 3 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
42 | | eqid 2610 |
. . . . . . . . . 10
⊢
(0g‘𝑃) = (0g‘𝑃) |
43 | 28, 29, 12, 42 | ply1scl0 19481 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
44 | 41, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
45 | 44 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
46 | 40, 45 | eqtrd 2644 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑘 0 𝑘)) = (0g‘𝑃)) |
47 | 46 | oveq2d 6565 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))) = (𝑋(-g‘𝑃)(0g‘𝑃))) |
48 | 28 | ply1ring 19439 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
49 | | ringgrp 18375 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
50 | 3, 48, 49 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Grp) |
51 | 50 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Grp) |
52 | | eqid 2610 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
53 | 30, 28, 52 | vr1cl 19408 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
54 | 41, 53 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
55 | 51, 54 | jca 553 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃))) |
56 | 55 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃))) |
57 | 52, 42, 32 | grpsubid1 17323 |
. . . . . 6
⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)(0g‘𝑃)) = 𝑋) |
58 | 56, 57 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)(0g‘𝑃)) = 𝑋) |
59 | 47, 58 | eqtrd 2644 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))) = 𝑋) |
60 | 59 | mpteq2dva 4672 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))) = (𝑘 ∈ 𝑁 ↦ 𝑋)) |
61 | 60 | oveq2d 6565 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋))) |
62 | 28 | ply1crng 19389 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
63 | 31 | crngmgp 18378 |
. . . . 5
⊢ (𝑃 ∈ CRing → 𝐺 ∈ CMnd) |
64 | | cmnmnd 18031 |
. . . . 5
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
65 | 62, 63, 64 | 3syl 18 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
66 | 65 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd) |
67 | 3, 53 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
68 | 67 | adantl 481 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
69 | 31, 52 | mgpbas 18318 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝐺) |
70 | 68, 69 | syl6eleq 2698 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝐺)) |
71 | | eqid 2610 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
72 | | chp0mat.m |
. . . 4
⊢ ↑ =
(.g‘𝐺) |
73 | 71, 72 | gsumconst 18157 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋)) = ((#‘𝑁) ↑ 𝑋)) |
74 | 66, 1, 70, 73 | syl3anc 1318 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ 𝑋)) = ((#‘𝑁) ↑ 𝑋)) |
75 | 34, 61, 74 | 3eqtrd 2648 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = ((#‘𝑁) ↑ 𝑋)) |