MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Visualization version   GIF version

Theorem chordthmlem2 24360
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 24359, where P = B, and using angrtmuld 24338 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmlem2.A (𝜑𝐴 ∈ ℂ)
chordthmlem2.B (𝜑𝐵 ∈ ℂ)
chordthmlem2.Q (𝜑𝑄 ∈ ℂ)
chordthmlem2.X (𝜑𝑋 ∈ ℝ)
chordthmlem2.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem2.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem2.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmlem2.PneM (𝜑𝑃𝑀)
chordthmlem2.QneM (𝜑𝑄𝑀)
Assertion
Ref Expression
chordthmlem2 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Distinct variable groups:   𝑥,𝑦,𝑄   𝑥,𝑃,𝑦   𝑥,𝑀,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 chordthmlem2.A . . 3 (𝜑𝐴 ∈ ℂ)
3 chordthmlem2.B . . 3 (𝜑𝐵 ∈ ℂ)
4 chordthmlem2.Q . . 3 (𝜑𝑄 ∈ ℂ)
5 chordthmlem2.M . . 3 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
6 chordthmlem2.ABequidistQ . . 3 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
7 2re 10967 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
9 2ne0 10990 . . . . . . . . . 10 2 ≠ 0
109a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
118, 10rereccld 10731 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
12 chordthmlem2.X . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1311, 12resubcld 10337 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
1413recnd 9947 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
153, 2subcld 10271 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1611recnd 9947 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
1712recnd 9947 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
1816, 17, 15subdird 10366 . . . . . . . 8 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
19 2cnd 10970 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
203, 19, 10divcan4d 10686 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
213times2d 11153 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
2221oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
2320, 22eqtr3d 2646 . . . . . . . . . . . 12 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
2423, 5oveq12d 6567 . . . . . . . . . . 11 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
253, 3addcld 9938 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
262, 3addcld 9938 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
2725, 26, 19, 10divsubdird 10719 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
283, 2, 3pnpcan2d 10309 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
2928oveq1d 6564 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
3024, 27, 293eqtr2d 2650 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
3115, 19, 10divrec2d 10684 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
3230, 31eqtrd 2644 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
33 chordthmlem2.P . . . . . . . . . 10 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
3417, 2mulcld 9939 . . . . . . . . . . . . 13 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
35 1cnd 9935 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
3635, 17subcld 10271 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑋) ∈ ℂ)
3736, 3mulcld 9939 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
3834, 37addcld 9938 . . . . . . . . . . . 12 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
3933, 38eqeltrd 2688 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
402, 39, 3, 17affineequiv 24353 . . . . . . . . . 10 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
4133, 40mpbid 221 . . . . . . . . 9 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
4232, 41oveq12d 6567 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
4326halfcld 11154 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
445, 43eqeltrd 2688 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
453, 44, 39nnncan1d 10305 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
4618, 42, 453eqtr2rd 2651 . . . . . . 7 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
47 chordthmlem2.PneM . . . . . . . 8 (𝜑𝑃𝑀)
4839, 44, 47subne0d 10280 . . . . . . 7 (𝜑 → (𝑃𝑀) ≠ 0)
4946, 48eqnetrrd 2850 . . . . . 6 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) ≠ 0)
5014, 15, 49mulne0bbd 10562 . . . . 5 (𝜑 → (𝐵𝐴) ≠ 0)
513, 2, 50subne0ad 10282 . . . 4 (𝜑𝐵𝐴)
5251necomd 2837 . . 3 (𝜑𝐴𝐵)
53 chordthmlem2.QneM . . 3 (𝜑𝑄𝑀)
541, 2, 3, 4, 5, 6, 52, 53chordthmlem 24359 . 2 (𝜑 → ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)})
554, 44subcld 10271 . . 3 (𝜑 → (𝑄𝑀) ∈ ℂ)
5639, 44subcld 10271 . . 3 (𝜑 → (𝑃𝑀) ∈ ℂ)
573, 44subcld 10271 . . 3 (𝜑 → (𝐵𝑀) ∈ ℂ)
584, 44, 53subne0d 10280 . . 3 (𝜑 → (𝑄𝑀) ≠ 0)
5919, 10recne0d 10674 . . . . 5 (𝜑 → (1 / 2) ≠ 0)
6016, 15, 59, 50mulne0d 10558 . . . 4 (𝜑 → ((1 / 2) · (𝐵𝐴)) ≠ 0)
6132, 60eqnetrd 2849 . . 3 (𝜑 → (𝐵𝑀) ≠ 0)
6232, 46oveq12d 6567 . . . . 5 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))))
6314, 15, 49mulne0bad 10561 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ≠ 0)
6416, 14, 15, 63, 50divcan5rd 10707 . . . . 5 (𝜑 → (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋)))
6562, 64eqtrd 2644 . . . 4 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋)))
6611, 13, 63redivcld 10732 . . . 4 (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ)
6765, 66eqeltrd 2688 . . 3 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) ∈ ℝ)
681, 55, 56, 57, 58, 48, 61, 67angrtmuld 24338 . 2 (𝜑 → (((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)}))
6954, 68mpbird 246 1 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  cdif 3537  {csn 4125  {cpr 4127  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cim 13686  abscabs 13822  πcpi 14636  logclog 24105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107
This theorem is referenced by:  chordthmlem3  24361
  Copyright terms: Public domain W3C validator