Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlimi Structured version   Visualization version   GIF version

Theorem chlimi 27475
 Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chlim.1 𝐴 ∈ V
Assertion
Ref Expression
chlimi ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)

Proof of Theorem chlimi
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isch2 27464 . . . 4 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
21simprbi 479 . . 3 (𝐻C → ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3 nnex 10903 . . . . . . 7 ℕ ∈ V
4 fex 6394 . . . . . . 7 ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V)
53, 4mpan2 703 . . . . . 6 (𝐹:ℕ⟶𝐻𝐹 ∈ V)
65adantr 480 . . . . 5 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐹 ∈ V)
7 feq1 5939 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻𝐹:ℕ⟶𝐻))
8 breq1 4586 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑣 𝑥𝐹𝑣 𝑥))
97, 8anbi12d 743 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝑥)))
109imbi1d 330 . . . . . . . 8 (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1110albidv 1836 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1211spcgv 3266 . . . . . 6 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
13 chlim.1 . . . . . . 7 𝐴 ∈ V
14 breq2 4587 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑣 𝑥𝐹𝑣 𝐴))
1514anbi2d 736 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝐴)))
16 eleq1 2676 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐻𝐴𝐻))
1715, 16imbi12d 333 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
1813, 17spcv 3272 . . . . . 6 (∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
1912, 18syl6 34 . . . . 5 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
206, 19syl 17 . . . 4 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
2120pm2.43b 53 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
222, 21syl 17 . 2 (𝐻C → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
23223impib 1254 1 ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583  ⟶wf 5800  ℕcn 10897   ⇝𝑣 chli 27168   Sℋ csh 27169   Cℋ cch 27170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-map 7746  df-nn 10898  df-ch 27462 This theorem is referenced by:  hhsscms  27520  chintcli  27574  chscllem4  27883
 Copyright terms: Public domain W3C validator