Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chex | Structured version Visualization version GIF version |
Description: The set of closed subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chex | ⊢ Cℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shex 27453 | . 2 ⊢ Sℋ ∈ V | |
2 | chsssh 27466 | . 2 ⊢ Cℋ ⊆ Sℋ | |
3 | 1, 2 | ssexi 4731 | 1 ⊢ Cℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 Vcvv 3173 Sℋ csh 27169 Cℋ cch 27170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-pow 4769 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fv 5812 df-ov 6552 df-sh 27448 df-ch 27462 |
This theorem is referenced by: isst 28456 ishst 28457 |
Copyright terms: Public domain | W3C validator |