Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ch0le | Structured version Visualization version GIF version |
Description: The zero subspace is the smallest member of Cℋ. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le | ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 27465 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | sh0le 27683 | . 2 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ⊆ wss 3540 Sℋ csh 27169 Cℋ cch 27170 0ℋc0h 27176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fv 5812 df-ov 6552 df-sh 27448 df-ch 27462 df-ch0 27494 |
This theorem is referenced by: chnlen0 27687 ch0pss 27688 ch0lei 27694 chssoc 27739 atcveq0 28591 |
Copyright terms: Public domain | W3C validator |