MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracol Structured version   Visualization version   GIF version

Theorem cgracol 25519
Description: Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgracol.l 𝐿 = (LineG‘𝐺)
cgracol.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
cgracol (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))

Proof of Theorem cgracol
StepHypRef Expression
1 cgracol.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
2 cgracol.i . . . . . . . . . 10 𝐼 = (Itv‘𝐺)
3 cgracol.m . . . . . . . . . 10 = (dist‘𝐺)
4 cgracol.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
76adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴𝑃)
8 cgracol.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
98adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
10 cgracol.c . . . . . . . . . . 11 (𝜑𝐶𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
12 cgracol.d . . . . . . . . . . 11 (𝜑𝐷𝑃)
1312adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷𝑃)
14 cgracol.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
1514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐸𝑃)
16 cgracol.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹𝑃)
18 cgracol.1 . . . . . . . . . . 11 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1918adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
20 eqid 2610 . . . . . . . . . 10 (hlG‘𝐺) = (hlG‘𝐺)
211, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane2 25505 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐶)
2221necomd 2837 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
2322adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐵)
241, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane1 25504 . . . . . . . . . . . . . . 15 (𝜑𝐴𝐵)
2524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
264adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
276adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
2810adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
298adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
30 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
311, 3, 2, 26, 27, 28, 29, 30tgbtwncom 25183 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
3231orcd 406 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
3323, 25, 323jca 1235 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
3422adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝐵)
3524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝐵)
364adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
3710adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
398adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
40 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
411, 3, 2, 36, 37, 38, 39, 40tgbtwncom 25183 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
4241olcd 407 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
4334, 35, 423jca 1235 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
4433, 43jaodan 822 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
451, 2, 20, 10, 6, 8, 4ishlg 25297 . . . . . . . . . . . . 13 (𝜑 → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4744, 46mpbird 246 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶((hlG‘𝐺)‘𝐵)𝐴)
481, 2, 20, 11, 7, 9, 5, 47hlcomd 25299 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴((hlG‘𝐺)‘𝐵)𝐶)
491, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 48cgrahl 25518 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷((hlG‘𝐺)‘𝐸)𝐹)
501, 2, 20, 13, 17, 15, 5ishlg 25297 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))))
5149, 50mpbid 221 . . . . . . . 8 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))))
5251simp3d 1068 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))
534adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐺 ∈ TarskiG)
5414adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐸𝑃)
5512adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷𝑃)
5616adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐹𝑃)
57 simpr 476 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐸𝐼𝐹))
581, 3, 2, 53, 54, 55, 56, 57tgbtwncom 25183 . . . . . . . . 9 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐹𝐼𝐸))
5958olcd 407 . . . . . . . 8 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
604adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐺 ∈ TarskiG)
6114adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐸𝑃)
6216adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹𝑃)
6312adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐷𝑃)
64 simpr 476 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐸𝐼𝐷))
651, 3, 2, 60, 61, 62, 63, 64tgbtwncom 25183 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐷𝐼𝐸))
6665orcd 406 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6759, 66jaodan 822 . . . . . . 7 ((𝜑 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6852, 67syldan 486 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6968orcd 406 . . . . 5 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
70 df-3or 1032 . . . . 5 ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)) ↔ ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
7169, 70sylibr 223 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
72 cgracol.l . . . . . 6 𝐿 = (LineG‘𝐺)
731, 2, 4, 20, 6, 8, 10, 12, 14, 16, 18cgracom 25514 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
741, 2, 20, 4, 12, 14, 16, 6, 8, 10, 73cgrane1 25504 . . . . . 6 (𝜑𝐷𝐸)
751, 72, 2, 4, 12, 14, 74, 16tgellng 25248 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7675adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7771, 76mpbird 246 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹 ∈ (𝐷𝐿𝐸))
7877orcd 406 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
794adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
8012adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
8114adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
8216adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
836adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
848adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
8510adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8618adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
87 simpr 476 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
881, 2, 3, 79, 83, 84, 85, 80, 81, 82, 86, 87cgrabtwn 25517 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
891, 72, 2, 79, 80, 81, 82, 88btwncolg3 25252 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
9024neneqd 2787 . . . . 5 (𝜑 → ¬ 𝐴 = 𝐵)
91 cgracol.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9291orcomd 402 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9392ord 391 . . . . 5 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9490, 93mpd 15 . . . 4 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
951, 72, 2, 4, 6, 8, 24, 10tgellng 25248 . . . 4 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
9694, 95mpbid 221 . . 3 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
97 df-3or 1032 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9896, 97sylib 207 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9978, 89, 98mpjaodan 823 1 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  hlGchlg 25295  cgrAccgra 25499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-hlg 25296  df-cgra 25500
This theorem is referenced by:  cgrancol  25520  tgasa1  25539
  Copyright terms: Public domain W3C validator