Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgr3permute1 Structured version   Visualization version   GIF version

Theorem cgr3permute1 31325
 Description: Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
cgr3permute1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝐹, 𝐸⟩⟩))

Proof of Theorem cgr3permute1
StepHypRef Expression
1 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 3simpc 1053 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
3 3simpc 1053 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) → (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))
4 cgrcomlr 31275 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩ ↔ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩))
51, 2, 3, 4syl3an 1360 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩ ↔ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩))
653anbi3d 1397 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩)))
7 3ancoma 1038 . . 3 ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩))
86, 7syl6bb 275 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩)))
9 brcgr3 31323 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
10 biid 250 . . 3 (𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ)
11 3ancomb 1040 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
12 3ancomb 1040 . . 3 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ↔ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)))
13 brcgr3 31323 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝐹, 𝐸⟩⟩ ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩)))
1410, 11, 12, 13syl3anb 1361 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝐹, 𝐸⟩⟩ ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐹, 𝐸⟩)))
158, 9, 143bitr4d 299 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ ⟨𝐴, ⟨𝐶, 𝐵⟩⟩Cgr3⟨𝐷, ⟨𝐹, 𝐸⟩⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977  ⟨cop 4131   class class class wbr 4583  ‘cfv 5804  ℕcn 10897  𝔼cee 25568  Cgrccgr 25570  Cgr3ccgr3 31313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-exp 12723  df-sum 14265  df-ee 25571  df-cgr 25573  df-cgr3 31318 This theorem is referenced by:  cgr3permute2  31326  lineext  31353  fscgr  31357
 Copyright terms: Public domain W3C validator