Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfsmo | Structured version Visualization version GIF version |
Description: The map in cff1 8963 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.) |
Ref | Expression |
---|---|
cfsmo | ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5246 | . . . . 5 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
2 | 1 | fveq2d 6107 | . . . 4 ⊢ (𝑥 = 𝑧 → (ℎ‘dom 𝑥) = (ℎ‘dom 𝑧)) |
3 | fveq2 6103 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥‘𝑛) = (𝑥‘𝑚)) | |
4 | suceq 5707 | . . . . . . 7 ⊢ ((𝑥‘𝑛) = (𝑥‘𝑚) → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑛 = 𝑚 → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) |
6 | 5 | cbviunv 4495 | . . . . 5 ⊢ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) |
7 | fveq1 6102 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥‘𝑚) = (𝑧‘𝑚)) | |
8 | suceq 5707 | . . . . . . 7 ⊢ ((𝑥‘𝑚) = (𝑧‘𝑚) → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) |
10 | 1, 9 | iuneq12d 4482 | . . . . 5 ⊢ (𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
11 | 6, 10 | syl5eq 2656 | . . . 4 ⊢ (𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
12 | 2, 11 | uneq12d 3730 | . . 3 ⊢ (𝑥 = 𝑧 → ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)) = ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
13 | 12 | cbvmptv 4678 | . 2 ⊢ (𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛))) = (𝑧 ∈ V ↦ ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
14 | eqid 2610 | . 2 ⊢ (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) | |
15 | 13, 14 | cfsmolem 8975 | 1 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 Vcvv 3173 ∪ cun 3538 ⊆ wss 3540 ∪ ciun 4455 ↦ cmpt 4643 dom cdm 5038 ↾ cres 5040 Oncon0 5640 suc csuc 5642 ⟶wf 5800 ‘cfv 5804 Smo wsmo 7329 recscrecs 7354 cfccf 8646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-smo 7330 df-recs 7355 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-card 8648 df-cf 8650 df-acn 8651 |
This theorem is referenced by: cfidm 8980 pwcfsdom 9284 |
Copyright terms: Public domain | W3C validator |