Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfilucfil2 | Structured version Visualization version GIF version |
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 22871. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
cfilucfil2 | ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metuval 22164 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
3 | 2 | fveq2d 6107 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (CauFilu‘(metUnif‘𝐷)) = (CauFilu‘((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))))) |
4 | 3 | eleq2d 2673 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))))) |
5 | oveq2 6557 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) | |
6 | 5 | imaeq2d 5385 | . . . . 5 ⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
7 | 6 | cbvmptv 4678 | . . . 4 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
8 | 7 | rneqi 5273 | . . 3 ⊢ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
9 | 8 | cfilucfil 22174 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) |
10 | 4, 9 | bitrd 267 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 ∅c0 3874 ↦ cmpt 4643 × cxp 5036 ◡ccnv 5037 ran crn 5039 “ cima 5041 ‘cfv 5804 (class class class)co 6549 0cc0 9815 ℝ+crp 11708 [,)cico 12048 PsMetcpsmet 19551 fBascfbas 19555 filGencfg 19556 metUnifcmetu 19558 CauFiluccfilu 21900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-2 10956 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ico 12052 df-psmet 19559 df-fbas 19564 df-fg 19565 df-metu 19566 df-fil 21460 df-ust 21814 df-cfilu 21901 |
This theorem is referenced by: cfilucfil3 22925 cmetcusp 22958 |
Copyright terms: Public domain | W3C validator |