Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem2 Structured version   Visualization version   GIF version

Theorem cevathlem2 39706
Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevathlem2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevathlem2
StepHypRef Expression
1 cevath.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.b . . . . . . . . 9 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
32simp2d 1067 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
4 cevath.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
54simp1d 1066 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
64simp2d 1067 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
73, 5, 63jca 1235 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8 cevath.c . . . . . . . 8 (𝜑𝑂 ∈ ℂ)
95, 8subcld 10271 . . . . . . . . . 10 (𝜑 → (𝐴𝑂) ∈ ℂ)
103, 8subcld 10271 . . . . . . . . . 10 (𝜑 → (𝐷𝑂) ∈ ℂ)
119, 10jca 553 . . . . . . . . 9 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐷𝑂) ∈ ℂ))
12 cevath.d . . . . . . . . . 10 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
1312simp1d 1066 . . . . . . . . 9 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
141, 11, 13sigariz 39701 . . . . . . . 8 (𝜑 → ((𝐷𝑂)𝐺(𝐴𝑂)) = 0)
158, 14jca 553 . . . . . . 7 (𝜑 → (𝑂 ∈ ℂ ∧ ((𝐷𝑂)𝐺(𝐴𝑂)) = 0))
161, 7, 15sigaradd 39704 . . . . . 6 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐴𝐵)𝐺(𝑂𝐵)))
171sigarperm 39698 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
186, 5, 8, 17syl3anc 1318 . . . . . 6 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐵)𝐺(𝑂𝐵)))
1916, 18eqtr4d 2647 . . . . 5 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) = ((𝐵𝑂)𝐺(𝐴𝑂)))
2019oveq1d 6564 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
215, 6subcld 10271 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
223, 6subcld 10271 . . . . . . 7 (𝜑 → (𝐷𝐵) ∈ ℂ)
2321, 22jca 553 . . . . . 6 (𝜑 → ((𝐴𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
241, 23sigarimcd 39700 . . . . 5 (𝜑 → ((𝐴𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
258, 6subcld 10271 . . . . . . 7 (𝜑 → (𝑂𝐵) ∈ ℂ)
2625, 22jca 553 . . . . . 6 (𝜑 → ((𝑂𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ))
271, 26sigarimcd 39700 . . . . 5 (𝜑 → ((𝑂𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
284simp3d 1068 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2928, 3subcld 10271 . . . . 5 (𝜑 → (𝐶𝐷) ∈ ℂ)
3024, 27, 29subdird 10366 . . . 4 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) − ((𝑂𝐵)𝐺(𝐷𝐵))) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
3120, 30eqtr3d 2646 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))))
326, 28, 53jca 1235 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
33 cevath.e . . . . . . 7 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
3433simp2d 1067 . . . . . 6 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
353, 34jca 553 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
361, 32, 35sharhght 39703 . . . 4 (𝜑 → (((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
376, 28, 83jca 1235 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝑂 ∈ ℂ))
381, 37, 35sharhght 39703 . . . 4 (𝜑 → (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) = (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)))
3936, 38oveq12d 6567 . . 3 (𝜑 → ((((𝐴𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷)) − (((𝑂𝐵)𝐺(𝐷𝐵)) · (𝐶𝐷))) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
405, 28subcld 10271 . . . . . . 7 (𝜑 → (𝐴𝐶) ∈ ℂ)
413, 28subcld 10271 . . . . . . 7 (𝜑 → (𝐷𝐶) ∈ ℂ)
421sigarim 39689 . . . . . . 7 (((𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4340, 41, 42syl2anc 691 . . . . . 6 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℝ)
4443recnd 9947 . . . . 5 (𝜑 → ((𝐴𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
458, 28subcld 10271 . . . . . . 7 (𝜑 → (𝑂𝐶) ∈ ℂ)
4645, 41jca 553 . . . . . 6 (𝜑 → ((𝑂𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
471, 46sigarimcd 39700 . . . . 5 (𝜑 → ((𝑂𝐶)𝐺(𝐷𝐶)) ∈ ℂ)
486, 3subcld 10271 . . . . 5 (𝜑 → (𝐵𝐷) ∈ ℂ)
4944, 47, 48subdird 10366 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))))
503, 5, 283jca 1235 . . . . . . 7 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ))
511, 50, 15sigaradd 39704 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐴𝐶)𝐺(𝑂𝐶)))
521sigarperm 39698 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑂 ∈ ℂ) → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5328, 5, 8, 52syl3anc 1318 . . . . . 6 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) = ((𝐴𝐶)𝐺(𝑂𝐶)))
5451, 53eqtr4d 2647 . . . . 5 (𝜑 → (((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) = ((𝐶𝑂)𝐺(𝐴𝑂)))
5554oveq1d 6564 . . . 4 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) − ((𝑂𝐶)𝐺(𝐷𝐶))) · (𝐵𝐷)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5649, 55eqtr3d 2646 . . 3 (𝜑 → ((((𝐴𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷)) − (((𝑂𝐶)𝐺(𝐷𝐶)) · (𝐵𝐷))) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)))
5731, 39, 563eqtrrd 2649 . 2 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)))
586, 8subcld 10271 . . . 4 (𝜑 → (𝐵𝑂) ∈ ℂ)
591sigarac 39690 . . . 4 (((𝐵𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ) → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6058, 9, 59syl2anc 691 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐴𝑂)) = -((𝐴𝑂)𝐺(𝐵𝑂)))
6160oveq1d 6564 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐴𝑂)) · (𝐶𝐷)) = (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)))
629, 58jca 553 . . . . 5 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
631, 62sigarimcd 39700 . . . 4 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
64 mulneg12 10347 . . . 4 ((((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6563, 29, 64syl2anc 691 . . 3 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)))
6628, 3negsubdi2d 10287 . . . 4 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
6766oveq2d 6565 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · -(𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6865, 67eqtrd 2644 . 2 (𝜑 → (-((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
6957, 61, 683eqtrd 2648 1 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  cr 9814  0cc0 9815   · cmul 9820  cmin 10145  -cneg 10146  ccj 13684  cim 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689
This theorem is referenced by:  cevath  39707
  Copyright terms: Public domain W3C validator