Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  celarent Structured version   Visualization version   GIF version

Theorem celarent 2552
 Description: "Celarent", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and all 𝜒 is 𝜑, therefore no 𝜒 is 𝜓. (In Aristotelian notation, EAE-1: MeP and SaM therefore SeP.) For example, given the "No reptiles have fur" and "All snakes are reptiles", therefore "No snakes have fur". Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 24-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
celarent.maj 𝑥(𝜑 → ¬ 𝜓)
celarent.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
celarent 𝑥(𝜒 → ¬ 𝜓)

Proof of Theorem celarent
StepHypRef Expression
1 celarent.maj . 2 𝑥(𝜑 → ¬ 𝜓)
2 celarent.min . 2 𝑥(𝜒𝜑)
31, 2barbara 2551 1 𝑥(𝜒 → ¬ 𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator