Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn6 Structured version   Visualization version   GIF version

Theorem cdlemn6 35509
Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b 𝐵 = (Base‘𝐾)
cdlemn8.l = (le‘𝐾)
cdlemn8.a 𝐴 = (Atoms‘𝐾)
cdlemn8.h 𝐻 = (LHyp‘𝐾)
cdlemn8.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn8.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn8.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemn8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn8.s + = (+g𝑈)
cdlemn8.f 𝐹 = (𝑇 (𝑃) = 𝑄)
Assertion
Ref Expression
cdlemn6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩) = ⟨((𝑠𝐹) ∘ 𝑔), 𝑠⟩)
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑇,   𝑃,   𝑄,   ,𝑊
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝐵(𝑔,𝑠)   𝑃(𝑔,𝑠)   + (𝑔,,𝑠)   𝑄(𝑔,𝑠)   𝑅(𝑔,,𝑠)   𝑇(𝑔,𝑠)   𝑈(𝑔,,𝑠)   𝐸(𝑔,,𝑠)   𝐹(𝑔,,𝑠)   𝐻(𝑔,𝑠)   𝐾(𝑔,𝑠)   (𝑔,𝑠)   𝑂(𝑔,,𝑠)   𝑊(𝑔,𝑠)

Proof of Theorem cdlemn6
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1082 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → 𝑠𝐸)
3 cdlemn8.l . . . . . . 7 = (le‘𝐾)
4 cdlemn8.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 cdlemn8.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 cdlemn8.p . . . . . . 7 𝑃 = ((oc‘𝐾)‘𝑊)
73, 4, 5, 6lhpocnel2 34323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
81, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 simp2l 1080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
10 cdlemn8.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemn8.f . . . . . 6 𝐹 = (𝑇 (𝑃) = 𝑄)
123, 4, 5, 10, 11ltrniotacl 34885 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
131, 8, 9, 12syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → 𝐹𝑇)
14 cdlemn8.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
155, 10, 14tendocl 35073 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
161, 2, 13, 15syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝑠𝐹) ∈ 𝑇)
17 simp3r 1083 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → 𝑔𝑇)
18 cdlemn8.b . . . . 5 𝐵 = (Base‘𝐾)
19 cdlemn8.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
2018, 5, 10, 14, 19tendo0cl 35096 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
211, 20syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → 𝑂𝐸)
22 cdlemn8.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
23 eqid 2610 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
24 cdlemn8.s . . . 4 + = (+g𝑈)
25 eqid 2610 . . . 4 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
265, 10, 14, 22, 23, 24, 25dvhopvadd 35400 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝐹) ∈ 𝑇𝑠𝐸) ∧ (𝑔𝑇𝑂𝐸)) → (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩) = ⟨((𝑠𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)⟩)
271, 16, 2, 17, 21, 26syl122anc 1327 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩) = ⟨((𝑠𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)⟩)
28 eqid 2610 . . . . . . 7 (𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢)))) = (𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢))))
295, 10, 14, 22, 23, 28, 25dvhfplusr 35391 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢)))))
301, 29syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (+g‘(Scalar‘𝑈)) = (𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢)))))
3130oveqd 6566 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = (𝑠(𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢))))𝑂))
3218, 5, 10, 14, 19, 28tendo0plr 35098 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢))))𝑂) = 𝑠)
331, 2, 32syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝑠(𝑡𝐸, 𝑢𝐸 ↦ (𝑇 ↦ ((𝑡) ∘ (𝑢))))𝑂) = 𝑠)
3431, 33eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = 𝑠)
3534opeq2d 4347 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → ⟨((𝑠𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)⟩ = ⟨((𝑠𝐹) ∘ 𝑔), 𝑠⟩)
3627, 35eqtrd 2644 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇)) → (⟨(𝑠𝐹), 𝑠+𝑔, 𝑂⟩) = ⟨((𝑠𝐹) ∘ 𝑔), 𝑠⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cop 4131   class class class wbr 4583  cmpt 4643   I cid 4948  cres 5040  ccom 5042  cfv 5804  crio 6510  (class class class)co 6549  cmpt2 6551  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771  lecple 15775  occoc 15776  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  DVecHcdvh 35385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063  df-dvech 35386
This theorem is referenced by:  cdlemn7  35510  dihordlem6  35520
  Copyright terms: Public domain W3C validator