Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml9 Structured version   Visualization version   GIF version

Theorem cdleml9 35290
 Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b 𝐵 = (Base‘𝐾)
cdleml6.j = (join‘𝐾)
cdleml6.m = (meet‘𝐾)
cdleml6.h 𝐻 = (LHyp‘𝐾)
cdleml6.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml6.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml6.p 𝑄 = ((oc‘𝐾)‘𝑊)
cdleml6.z 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
cdleml6.y 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdleml6.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
cdleml6.u 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
cdleml6.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml6.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )
Distinct variable groups:   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐵,𝑏,𝑓,𝑔,𝑧   ,𝑏,𝑔,𝑧   𝑠,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑓,𝑔,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝑔,𝑍
Allowed substitution hints:   𝐵(,𝑠)   𝑄(𝑓,,𝑠)   𝑅(𝑓,,𝑠)   𝑇(,𝑠)   𝑈(𝑧,𝑓,𝑔,,𝑠,𝑏)   𝐸(𝑧,𝑓,𝑔,,𝑠,𝑏)   𝐻(𝑓,,𝑠)   (𝑓,,𝑠)   𝐾(𝑓,,𝑠)   (𝑓,,𝑠)   𝑊(𝑓,,𝑠)   𝑋(𝑧,𝑓,𝑔,,𝑠,𝑏)   𝑌(𝑓,𝑔,,𝑠,𝑏)   0 (𝑧,𝑓,𝑔,,𝑠,𝑏)   𝑍(𝑧,𝑓,,𝑠,𝑏)

Proof of Theorem cdleml9
StepHypRef Expression
1 cdleml6.b . . . 4 𝐵 = (Base‘𝐾)
2 cdleml6.h . . . 4 𝐻 = (LHyp‘𝐾)
3 cdleml6.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdleml6.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 cdleml6.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
61, 2, 3, 4, 5tendo1ne0 35134 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 0 )
763ad2ant1 1075 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → ( I ↾ 𝑇) ≠ 0 )
8 cdleml6.j . . . . . . 7 = (join‘𝐾)
9 cdleml6.m . . . . . . 7 = (meet‘𝐾)
10 cdleml6.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
11 cdleml6.p . . . . . . 7 𝑄 = ((oc‘𝐾)‘𝑊)
12 cdleml6.z . . . . . . 7 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
13 cdleml6.y . . . . . . 7 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
14 cdleml6.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
15 cdleml6.u . . . . . . 7 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
161, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5cdleml8 35289 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝑈𝑠) = ( I ↾ 𝑇))
1716adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) ∧ 𝑈 = 0 ) → (𝑈𝑠) = ( I ↾ 𝑇))
18 coeq1 5201 . . . . . 6 (𝑈 = 0 → (𝑈𝑠) = ( 0𝑠))
19 simp1 1054 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simp3l 1082 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑠𝐸)
211, 2, 3, 4, 5tendo0mul 35132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( 0𝑠) = 0 )
2219, 20, 21syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → ( 0𝑠) = 0 )
2318, 22sylan9eqr 2666 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) ∧ 𝑈 = 0 ) → (𝑈𝑠) = 0 )
2417, 23eqtr3d 2646 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) ∧ 𝑈 = 0 ) → ( I ↾ 𝑇) = 0 )
2524ex 449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝑈 = 0 → ( I ↾ 𝑇) = 0 ))
2625necon3d 2803 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (( I ↾ 𝑇) ≠ 0𝑈0 ))
277, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ifcif 4036   ↦ cmpt 4643   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  occoc 15776  joincjn 16767  meetcmee 16768  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463  TEndoctendo 35058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061 This theorem is referenced by:  erngdvlem4  35297  erngdvlem4-rN  35305
 Copyright terms: Public domain W3C validator