Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk55a Structured version   Visualization version   GIF version

Theorem cdlemk55a 35265
 Description: Lemma for cdlemk55 35267. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk55a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧   𝑗,𝑏,𝑔,𝑧
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝑇(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)   𝐼(𝑗)   (𝑗)   𝐾(𝑗)   (𝑗)   (𝑗)   𝑁(𝑗)   𝑊(𝑗)   𝑋(𝑧,𝑔,𝑗,𝑏)   𝑌(𝑔,𝑗,𝑏)   𝑍(𝑧,𝑗,𝑏)

Proof of Theorem cdlemk55a
StepHypRef Expression
1 simp1l 1078 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp211 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐹𝑇)
3 simp212 1193 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐹 ≠ ( I ↾ 𝐵))
42, 3jca 553 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
5 simp32 1091 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗𝑇)
6 simp213 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑁𝑇)
7 simp23 1089 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp1r 1079 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐹) = (𝑅𝑁))
97, 8jca 553 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
10 cdlemk5.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
11 cdlemk5.l . . . . . . . . 9 = (le‘𝐾)
12 cdlemk5.j . . . . . . . . 9 = (join‘𝐾)
13 cdlemk5.m . . . . . . . . 9 = (meet‘𝐾)
14 cdlemk5.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
15 cdlemk5.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
16 cdlemk5.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 cdlemk5.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
18 cdlemk5.z . . . . . . . . 9 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
19 cdlemk5.y . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
20 cdlemk5.x . . . . . . . . 9 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 35244 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑗𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑗 / 𝑔𝑋𝑇)
221, 4, 5, 6, 9, 21syl131anc 1331 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 / 𝑔𝑋𝑇)
2310, 15, 16ltrn1o 34428 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑗 / 𝑔𝑋𝑇) → 𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵)
241, 22, 23syl2anc 691 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵)
25 f1ococnv2 6076 . . . . . 6 (𝑗 / 𝑔𝑋:𝐵1-1-onto𝐵 → (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋) = ( I ↾ 𝐵))
2624, 25syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋) = ( I ↾ 𝐵))
2726coeq2d 5206 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)))
28 simp22 1088 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺𝑇)
29 simp31l 1177 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼𝑇)
3015, 16ltrnco 35025 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐼𝑇) → (𝐺𝐼) ∈ 𝑇)
311, 28, 29, 30syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) ∈ 𝑇)
3210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 35244 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝐼) ∈ 𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝐼) / 𝑔𝑋𝑇)
331, 4, 31, 6, 9, 32syl131anc 1331 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋𝑇)
3410, 15, 16ltrn1o 34428 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐼) / 𝑔𝑋𝑇) → (𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵)
351, 33, 34syl2anc 691 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵)
36 f1of 6050 . . . . 5 ((𝐺𝐼) / 𝑔𝑋:𝐵1-1-onto𝐵(𝐺𝐼) / 𝑔𝑋:𝐵𝐵)
37 fcoi1 5991 . . . . 5 ((𝐺𝐼) / 𝑔𝑋:𝐵𝐵 → ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)) = (𝐺𝐼) / 𝑔𝑋)
3835, 36, 373syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋 ∘ ( I ↾ 𝐵)) = (𝐺𝐼) / 𝑔𝑋)
3927, 38eqtr2d 2645 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)))
40 coass 5571 . . 3 (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = ((𝐺𝐼) / 𝑔𝑋 ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋))
4139, 40syl6eqr 2662 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4210, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk54 35264 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4342coeq1d 5205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
44 coass 5571 . . . 4 (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋))
4526coeq2d 5206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)))
4610, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 35244 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
471, 4, 28, 6, 9, 46syl131anc 1331 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺 / 𝑔𝑋𝑇)
4810, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s-id 35244 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐼𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐼 / 𝑔𝑋𝑇)
491, 4, 29, 6, 9, 48syl131anc 1331 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼 / 𝑔𝑋𝑇)
5015, 16ltrnco 35025 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝐼 / 𝑔𝑋𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
511, 47, 49, 50syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
5210, 15, 16ltrn1o 34428 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵)
531, 51, 52syl2anc 691 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵)
54 f1of 6050 . . . . . 6 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵1-1-onto𝐵 → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵𝐵)
55 fcoi1 5991 . . . . . 6 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋):𝐵𝐵 → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5653, 54, 553syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ ( I ↾ 𝐵)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5745, 56eqtrd 2644 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ (𝑗 / 𝑔𝑋𝑗 / 𝑔𝑋)) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5844, 57syl5eq 2656 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
5943, 58eqtrd 2644 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
6041, 59eqtrd 2644 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ⦋csb 3499   class class class wbr 4583   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464 This theorem is referenced by:  cdlemk55b  35266
 Copyright terms: Public domain W3C validator