Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg8b Structured version   Visualization version   GIF version

Theorem cdlemg8b 34934
Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg8b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄))

Proof of Theorem cdlemg8b
StepHypRef Expression
1 simp1l 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐾 ∈ HL)
2 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐾 ∈ Lat)
4 simp21l 1171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃𝐴)
5 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdlemg8.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 33594 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
84, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
9 simp22l 1173 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑄𝐴)
105, 6atbase 33594 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
119, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑄 ∈ (Base‘𝐾))
12 cdlemg8.l . . . . 5 = (le‘𝐾)
13 cdlemg8.j . . . . 5 = (join‘𝐾)
145, 12, 13latlej1 16883 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
153, 8, 11, 14syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃 (𝑃 𝑄))
16 simp1 1054 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simp23 1089 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐹𝑇)
18 simp31 1090 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐺𝑇)
19 simp21 1087 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 cdlemg8.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
21 cdlemg8.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
2212, 6, 20, 21ltrnel 34443 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
2316, 18, 19, 22syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
2412, 6, 20, 21ltrnel 34443 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → ((𝐹‘(𝐺𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺𝑃)) 𝑊))
2524simpld 474 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
2616, 17, 23, 25syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
275, 6atbase 33594 . . . . . 6 ((𝐹‘(𝐺𝑃)) ∈ 𝐴 → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
2826, 27syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
295, 20, 21ltrncl 34429 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
3016, 18, 11, 29syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐺𝑄) ∈ (Base‘𝐾))
315, 20, 21ltrncl 34429 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑄)) ∈ (Base‘𝐾))
3216, 17, 30, 31syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑄)) ∈ (Base‘𝐾))
335, 12, 13latlej1 16883 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑄)) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑃)) ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))))
343, 28, 32, 33syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))))
35 simp32 1091 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄))
3634, 35breqtrd 4609 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) (𝑃 𝑄))
375, 13, 6hlatjcl 33671 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
381, 4, 9, 37syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
395, 12, 13latjle12 16885 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) (𝑃 𝑄)) ↔ (𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄)))
403, 8, 28, 38, 39syl13anc 1320 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝑃 (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) (𝑃 𝑄)) ↔ (𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄)))
4115, 36, 40mpbi2and 958 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄))
42 simp33 1092 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ≠ 𝑃)
4342necomd 2837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃 ≠ (𝐹‘(𝐺𝑃)))
4412, 13, 6ps-1 33781 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴𝑃 ≠ (𝐹‘(𝐺𝑃))) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄) ↔ (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄)))
451, 4, 26, 43, 4, 9, 44syl132anc 1336 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄) ↔ (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄)))
4641, 45mpbid 221 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409
This theorem is referenced by:  cdlemg8c  34935  cdlemg8d  34936
  Copyright terms: Public domain W3C validator