Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Structured version   Visualization version   GIF version

Theorem cdlemg46 35041
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg46 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hint:   𝐵()

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1105 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 simp1 1054 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2r 1081 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
4 simp32 1091 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ≠ ( I ↾ 𝐵))
5 cdlemg46.b . . . . . 6 𝐵 = (Base‘𝐾)
6 eqid 2610 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
7 cdlemg46.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg46.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemg46.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
105, 6, 7, 8, 9trlnidat 34478 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ≠ ( I ↾ 𝐵)) → (𝑅) ∈ (Atoms‘𝐾))
112, 3, 4, 10syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ∈ (Atoms‘𝐾))
1211adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ (Atoms‘𝐾))
13 simp2l 1080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
14 simp31 1090 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
155, 6, 7, 8, 9trlnidat 34478 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
162, 13, 14, 15syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) ∈ (Atoms‘𝐾))
1716adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
18 simpl33 1137 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ≠ (𝑅𝐹))
19 simpr 476 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ∈ (Atoms‘𝐾))
207, 8ltrnco 35025 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
212, 3, 13, 20syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
227, 8ltrncnv 34450 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
232, 13, 22syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
24 eqid 2610 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
25 eqid 2610 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
2624, 25, 7, 8, 9trlco 35033 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹) ∈ 𝑇𝐹𝑇) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
272, 21, 23, 26syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
28 coass 5571 . . . . . . . 8 ((𝐹) ∘ 𝐹) = ( ∘ (𝐹𝐹))
295, 7, 8ltrn1o 34428 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
302, 13, 29syl2anc 691 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹:𝐵1-1-onto𝐵)
31 f1ococnv2 6076 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐹) = ( I ↾ 𝐵))
3332coeq2d 5206 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = ( ∘ ( I ↾ 𝐵)))
345, 7, 8ltrn1o 34428 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
352, 3, 34syl2anc 691 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
36 f1of 6050 . . . . . . . . . 10 (:𝐵1-1-onto𝐵:𝐵𝐵)
37 fcoi1 5991 . . . . . . . . . 10 (:𝐵𝐵 → ( ∘ ( I ↾ 𝐵)) = )
3835, 36, 373syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( I ↾ 𝐵)) = )
3933, 38eqtrd 2644 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐹)) = )
4028, 39syl5eq 2656 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐹) = )
4140fveq2d 6107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘((𝐹) ∘ 𝐹)) = (𝑅))
427, 8, 9trlcnv 34470 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
432, 13, 42syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐹))
4443oveq2d 6565 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) = ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4527, 41, 443brtr3d 4614 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4645adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
4724, 25, 6hlatlej2 33680 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
481, 19, 17, 47syl3anc 1318 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
49 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
501, 49syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
515, 6atbase 33594 . . . . . 6 ((𝑅) ∈ (Atoms‘𝐾) → (𝑅) ∈ 𝐵)
5212, 51syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅) ∈ 𝐵)
535, 6atbase 33594 . . . . . 6 ((𝑅𝐹) ∈ (Atoms‘𝐾) → (𝑅𝐹) ∈ 𝐵)
5417, 53syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ 𝐵)
555, 25, 6hlatjcl 33671 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
561, 19, 17, 55syl3anc 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)
575, 24, 25latjle12 16885 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅) ∈ 𝐵 ∧ (𝑅𝐹) ∈ 𝐵 ∧ ((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∈ 𝐵)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5850, 52, 54, 56, 57syl13anc 1320 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (((𝑅)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)) ∧ (𝑅𝐹)(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))) ↔ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹))))
5946, 48, 58mpbi2and 958 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))
6024, 25, 62atjlej 33783 . . 3 ((𝐾 ∈ HL ∧ ((𝑅) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ (𝑅) ≠ (𝑅𝐹)) ∧ ((𝑅‘(𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ((𝑅)(join‘𝐾)(𝑅𝐹))(le‘𝐾)((𝑅‘(𝐹))(join‘𝐾)(𝑅𝐹)))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
611, 12, 17, 18, 19, 17, 59, 60syl133anc 1341 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
62 nelne2 2879 . . . 4 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ≠ (𝑅‘(𝐹)))
6362necomd 2837 . . 3 (((𝑅𝐹) ∈ (Atoms‘𝐾) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6416, 63sylan 487 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) ∧ ¬ (𝑅‘(𝐹)) ∈ (Atoms‘𝐾)) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
6561, 64pm2.61dan 828 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583   I cid 4948  ccnv 5037  cres 5040  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464
This theorem is referenced by:  cdlemg47  35042
  Copyright terms: Public domain W3C validator