Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2cex | Structured version Visualization version GIF version |
Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 34869? (Contributed by NM, 22-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
Ref | Expression |
---|---|
cdlemg2cex | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdlemg2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdlemg2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemg1cex 34894 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)))) |
6 | simplll 794 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝐾 ∈ HL) | |
7 | simpllr 795 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | |
8 | simplrl 796 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑝 ∈ 𝐴) | |
9 | simprl 790 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → ¬ 𝑝 ≤ 𝑊) | |
10 | simplrr 797 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑞 ∈ 𝐴) | |
11 | simprr 792 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → ¬ 𝑞 ≤ 𝑊) | |
12 | cdlemg2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
13 | cdlemg2.j | . . . . . . . 8 ⊢ ∨ = (join‘𝐾) | |
14 | cdlemg2.m | . . . . . . . 8 ⊢ ∧ = (meet‘𝐾) | |
15 | cdlemg2ex.u | . . . . . . . 8 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
16 | cdlemg2ex.d | . . . . . . . 8 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
17 | cdlemg2ex.e | . . . . . . . 8 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
18 | cdlemg2ex.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
19 | eqid 2610 | . . . . . . . 8 ⊢ (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) | |
20 | 12, 1, 13, 14, 2, 3, 15, 16, 17, 18, 4, 19 | cdlemg1b2 34877 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = 𝐺) |
21 | 6, 7, 8, 9, 10, 11, 20 | syl222anc 1334 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = 𝐺) |
22 | 21 | eqeq2d 2620 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) ↔ 𝐹 = 𝐺)) |
23 | 22 | pm5.32da 671 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = 𝐺))) |
24 | df-3an 1033 | . . . 4 ⊢ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) | |
25 | df-3an 1033 | . . . 4 ⊢ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = 𝐺)) | |
26 | 23, 24, 25 | 3bitr4g 302 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
27 | 26 | 2rexbidva 3038 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
28 | 5, 27 | bitrd 267 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ⦋csb 3499 ifcif 4036 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 Basecbs 15695 lecple 15775 joincjn 16767 meetcmee 16768 Atomscatm 33568 HLchlt 33655 LHypclh 34288 LTrncltrn 34405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-undef 7286 df-map 7746 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 df-lvols 33804 df-lines 33805 df-psubsp 33807 df-pmap 33808 df-padd 34100 df-lhyp 34292 df-laut 34293 df-ldil 34408 df-ltrn 34409 df-trl 34464 |
This theorem is referenced by: cdlemg2ce 34898 |
Copyright terms: Public domain | W3C validator |