Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme51finvfvN Structured version   Visualization version   GIF version

Theorem cdleme51finvfvN 34861
 Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemef51.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef51.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs51.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef51.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
Assertion
Ref Expression
cdleme51finvfvN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹𝑋) = (𝐺𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧,   ,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐴,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑐,𝑠,𝑣,𝑥,𝑦,𝑧   𝐸,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧   𝐹,𝑎,𝑏,𝑐,𝑢,𝑣   𝐻,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐾,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑃,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑄,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑐,𝑠,𝑡,𝑣,𝑥,𝑦,𝑧   𝑊,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑋,𝑎,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐺,𝑠,𝑡,𝑥,𝑦,𝑧   𝑁,𝑎,𝑏,𝑐,𝑡,𝑢,𝑥,𝑦,𝑧   𝑂,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑐,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑢,𝑡)   𝑈(𝑢)   𝐸(𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑢,𝑡,𝑠)   𝑉(𝑠)   𝑋(𝑏)

Proof of Theorem cdleme51finvfvN
StepHypRef Expression
1 cdlemef50.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemef50.l . . 3 = (le‘𝐾)
3 cdlemef50.j . . 3 = (join‘𝐾)
4 cdlemef50.m . . 3 = (meet‘𝐾)
5 cdlemef50.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemef50.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemef50.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef50.d . . 3 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef50.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
11 cdlemef51.v . . 3 𝑉 = ((𝑄 𝑃) 𝑊)
12 cdlemef51.n . . 3 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
13 cdlemefs51.o . . 3 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
14 cdlemef51.g . . 3 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleme48fgv 34844 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹‘(𝐺𝑋)) = 𝑋)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50f1o 34852 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
1716adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
181, 2, 3, 4, 5, 6, 11, 12, 13, 14cdlemeg46fvcl 34812 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)
19 f1ocnvfv 6434 . . 3 ((𝐹:𝐵1-1-onto𝐵 ∧ (𝐺𝑋) ∈ 𝐵) → ((𝐹‘(𝐺𝑋)) = 𝑋 → (𝐹𝑋) = (𝐺𝑋)))
2017, 18, 19syl2anc 691 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → ((𝐹‘(𝐺𝑋)) = 𝑋 → (𝐹𝑋) = (𝐺𝑋)))
2115, 20mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹𝑋) = (𝐺𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ⦋csb 3499  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037  –1-1-onto→wf1o 5803  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292 This theorem is referenced by:  cdleme51finvN  34862
 Copyright terms: Public domain W3C validator