Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme29ex Structured version   Visualization version   GIF version

Theorem cdleme29ex 34680
 Description: Lemma for cdleme29b 34681. (Compare cdleme25a 34659.) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
Assertion
Ref Expression
cdleme29ex ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))
Distinct variable groups:   𝑢,𝑠,𝑧,𝐴   𝐵,𝑠,𝑢,𝑧   𝑢,𝐹   𝐻,𝑠,𝑧   ,𝑠,𝑢,𝑧   𝐾,𝑠,𝑧   ,𝑠,𝑢,𝑧   ,𝑠,𝑢,𝑧   𝑢,𝑁   𝑃,𝑠,𝑢,𝑧   𝑄,𝑠,𝑢,𝑧   𝑈,𝑠,𝑢,𝑧   𝑊,𝑠,𝑢,𝑧   𝑋,𝑠
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑠)   𝐷(𝑧,𝑢,𝑠)   𝐹(𝑧,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑋(𝑧,𝑢)   𝑍(𝑧,𝑢,𝑠)

Proof of Theorem cdleme29ex
StepHypRef Expression
1 simp11 1084 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3 1056 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
3 cdleme26.b . . . 4 𝐵 = (Base‘𝐾)
4 cdleme26.l . . . 4 = (le‘𝐾)
5 cdleme26.j . . . 4 = (join‘𝐾)
6 cdleme26.m . . . 4 = (meet‘𝐾)
7 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
8 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
93, 4, 5, 6, 7, 8lhpmcvr2 34328 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
101, 2, 9syl2anc 691 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
11 simp11l 1165 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ HL)
1211adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ HL)
13 hllat 33668 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1412, 13syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ Lat)
15 simp11r 1166 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐻)
1615adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑊𝐻)
17 simpl12 1130 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
18 simpl13 1131 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
19 simpr 476 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
20 simpl2 1058 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑃𝑄)
21 cdleme27.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
22 cdleme27.f . . . . . . . . 9 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
23 cdleme27.z . . . . . . . . 9 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
24 cdleme27.n . . . . . . . . 9 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
25 cdleme27.d . . . . . . . . 9 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
26 cdleme27.c . . . . . . . . 9 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
273, 4, 5, 6, 7, 8, 21, 22, 23, 24, 25, 26cdleme27cl 34672 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝐶𝐵)
2812, 16, 17, 18, 19, 20, 27syl222anc 1334 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐶𝐵)
29 simpl3l 1109 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑋𝐵)
303, 8lhpbase 34302 . . . . . . . . 9 (𝑊𝐻𝑊𝐵)
3116, 30syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑊𝐵)
323, 6latmcl 16875 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3314, 29, 31, 32syl3anc 1318 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
343, 5latjcl 16874 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝐶𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝐶 (𝑋 𝑊)) ∈ 𝐵)
3514, 28, 33, 34syl3anc 1318 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐶 (𝑋 𝑊)) ∈ 𝐵)
3635expr 641 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑠𝐴) → (¬ 𝑠 𝑊 → (𝐶 (𝑋 𝑊)) ∈ 𝐵))
3736adantrd 483 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → (𝐶 (𝑋 𝑊)) ∈ 𝐵))
3837ancld 574 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵)))
3938reximdva 3000 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵)))
4010, 39mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ifcif 4036   class class class wbr 4583  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292 This theorem is referenced by:  cdleme29b  34681
 Copyright terms: Public domain W3C validator