Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme29b Structured version   Visualization version   GIF version

Theorem cdleme29b 34681
Description: Transform cdleme28 34679. (Compare cdleme25b 34660.) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
Assertion
Ref Expression
cdleme29b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊))))
Distinct variable groups:   𝑢,𝑠,𝑧,𝐴   𝐵,𝑠,𝑢,𝑧   𝑢,𝐹   𝐻,𝑠,𝑧   ,𝑠,𝑢,𝑧   𝐾,𝑠,𝑧   ,𝑠,𝑢,𝑧   ,𝑠,𝑢,𝑧   𝑢,𝑁   𝑃,𝑠,𝑢,𝑧   𝑄,𝑠,𝑢,𝑧   𝑈,𝑠,𝑢,𝑧   𝑊,𝑠,𝑢,𝑧   𝑋,𝑠   𝑣,𝐴   𝑣,𝐵   𝑣,   𝑣,   𝑣,   𝑣,𝑃   𝑣,𝑄   𝑣,𝑈   𝑣,𝑊   𝑣,𝐶   𝑣,𝑠,𝑍,𝑢   𝑧,𝑣,𝑋
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑠)   𝐷(𝑧,𝑣,𝑢,𝑠)   𝐹(𝑧,𝑣,𝑠)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝑁(𝑧,𝑣,𝑠)   𝑋(𝑢)   𝑍(𝑧)

Proof of Theorem cdleme29b
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cdleme26.b . . 3 𝐵 = (Base‘𝐾)
2 cdleme26.l . . 3 = (le‘𝐾)
3 cdleme26.j . . 3 = (join‘𝐾)
4 cdleme26.m . . 3 = (meet‘𝐾)
5 cdleme26.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdleme26.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdleme27.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdleme27.f . . 3 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
9 cdleme27.z . . 3 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
10 cdleme27.n . . 3 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
11 cdleme27.d . . 3 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
12 cdleme27.c . . 3 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme29ex 34680 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))
14 eqid 2610 . . 3 ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
15 eqid 2610 . . 3 ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))) = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
16 eqid 2610 . . 3 (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))) = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))))
17 eqid 2610 . . 3 if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) = if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17cdleme28 34679 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊))))
19 breq1 4586 . . . . . 6 (𝑠 = 𝑡 → (𝑠 𝑊𝑡 𝑊))
2019notbid 307 . . . . 5 (𝑠 = 𝑡 → (¬ 𝑠 𝑊 ↔ ¬ 𝑡 𝑊))
21 oveq1 6556 . . . . . 6 (𝑠 = 𝑡 → (𝑠 (𝑋 𝑊)) = (𝑡 (𝑋 𝑊)))
2221eqeq1d 2612 . . . . 5 (𝑠 = 𝑡 → ((𝑠 (𝑋 𝑊)) = 𝑋 ↔ (𝑡 (𝑋 𝑊)) = 𝑋))
2320, 22anbi12d 743 . . . 4 (𝑠 = 𝑡 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)))
2412oveq1i 6559 . . . . 5 (𝐶 (𝑋 𝑊)) = (if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) (𝑋 𝑊))
25 breq1 4586 . . . . . . 7 (𝑠 = 𝑡 → (𝑠 (𝑃 𝑄) ↔ 𝑡 (𝑃 𝑄)))
26 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 → (𝑠 𝑧) = (𝑡 𝑧))
2726oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ((𝑠 𝑧) 𝑊) = ((𝑡 𝑧) 𝑊))
2827oveq2d 6565 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (𝑍 ((𝑠 𝑧) 𝑊)) = (𝑍 ((𝑡 𝑧) 𝑊)))
2928oveq2d 6565 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊))) = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))
3010, 29syl5eq 2656 . . . . . . . . . . . 12 (𝑠 = 𝑡𝑁 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))
3130eqeq2d 2620 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑢 = 𝑁𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))))
3231imbi2d 329 . . . . . . . . . 10 (𝑠 = 𝑡 → (((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
3332ralbidv 2969 . . . . . . . . 9 (𝑠 = 𝑡 → (∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
3433riotabidv 6513 . . . . . . . 8 (𝑠 = 𝑡 → (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁)) = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
3511, 34syl5eq 2656 . . . . . . 7 (𝑠 = 𝑡𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
36 oveq1 6556 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠 𝑈) = (𝑡 𝑈))
37 oveq2 6557 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑃 𝑠) = (𝑃 𝑡))
3837oveq1d 6564 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑡) 𝑊))
3938oveq2d 6565 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑡) 𝑊)))
4036, 39oveq12d 6567 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
418, 40syl5eq 2656 . . . . . . 7 (𝑠 = 𝑡𝐹 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
4225, 35, 41ifbieq12d 4063 . . . . . 6 (𝑠 = 𝑡 → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))))
4342oveq1d 6564 . . . . 5 (𝑠 = 𝑡 → (if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊)))
4424, 43syl5eq 2656 . . . 4 (𝑠 = 𝑡 → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊)))
4523, 44reusv3 4802 . . 3 (∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵) → (∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊))) ↔ ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊)))))
4645biimpd 218 . 2 (∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵) → (∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊))) → ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊)))))
4713, 18, 46sylc 63 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ifcif 4036   class class class wbr 4583  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292
This theorem is referenced by:  cdleme29c  34682
  Copyright terms: Public domain W3C validator