Proof of Theorem cdleme25cv
Step | Hyp | Ref
| Expression |
1 | | breq1 4586 |
. . . . . . . . 9
⊢ (𝑠 = 𝑧 → (𝑠 ≤ 𝑊 ↔ 𝑧 ≤ 𝑊)) |
2 | 1 | notbid 307 |
. . . . . . . 8
⊢ (𝑠 = 𝑧 → (¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑧 ≤ 𝑊)) |
3 | | breq1 4586 |
. . . . . . . . 9
⊢ (𝑠 = 𝑧 → (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑧 ≤ (𝑃 ∨ 𝑄))) |
4 | 3 | notbid 307 |
. . . . . . . 8
⊢ (𝑠 = 𝑧 → (¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ↔ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) |
5 | 2, 4 | anbi12d 743 |
. . . . . . 7
⊢ (𝑠 = 𝑧 → ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) ↔ (¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) |
6 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑧 → (𝑠 ∨ 𝑈) = (𝑧 ∨ 𝑈)) |
7 | | oveq2 6557 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑧 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑧)) |
8 | 7 | oveq1d 6564 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑧 → ((𝑃 ∨ 𝑠) ∧ 𝑊) = ((𝑃 ∨ 𝑧) ∧ 𝑊)) |
9 | 8 | oveq2d 6565 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑧 → (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
10 | 6, 9 | oveq12d 6567 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑧 → ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊)))) |
11 | | oveq2 6557 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑧 → (𝑅 ∨ 𝑠) = (𝑅 ∨ 𝑧)) |
12 | 11 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑧 → ((𝑅 ∨ 𝑠) ∧ 𝑊) = ((𝑅 ∨ 𝑧) ∧ 𝑊)) |
13 | 10, 12 | oveq12d 6567 |
. . . . . . . . 9
⊢ (𝑠 = 𝑧 → (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊)) = (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) |
14 | 13 | oveq2d 6565 |
. . . . . . . 8
⊢ (𝑠 = 𝑧 → ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊)))) |
15 | 14 | eqeq2d 2620 |
. . . . . . 7
⊢ (𝑠 = 𝑧 → (𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) ↔ 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))))) |
16 | 5, 15 | imbi12d 333 |
. . . . . 6
⊢ (𝑠 = 𝑧 → (((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊)))) ↔ ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊)))))) |
17 | 16 | cbvralv 3147 |
. . . . 5
⊢
(∀𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊)))) ↔ ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))))) |
18 | | cdleme25cv.n |
. . . . . . . . 9
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) |
19 | | cdleme25cv.f |
. . . . . . . . . . 11
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
20 | 19 | oveq1i 6559 |
. . . . . . . . . 10
⊢ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊)) = (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊)) |
21 | 20 | oveq2i 6560 |
. . . . . . . . 9
⊢ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) |
22 | 18, 21 | eqtri 2632 |
. . . . . . . 8
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))) |
23 | 22 | eqeq2i 2622 |
. . . . . . 7
⊢ (𝑢 = 𝑁 ↔ 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊)))) |
24 | 23 | imbi2i 325 |
. . . . . 6
⊢ (((¬
𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))))) |
25 | 24 | ralbii 2963 |
. . . . 5
⊢
(∀𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑠) ∧ 𝑊))))) |
26 | | cdleme25cv.o |
. . . . . . . . 9
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) |
27 | | cdleme25cv.g |
. . . . . . . . . . 11
⊢ 𝐺 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
28 | 27 | oveq1i 6559 |
. . . . . . . . . 10
⊢ (𝐺 ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊)) = (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊)) |
29 | 28 | oveq2i 6560 |
. . . . . . . . 9
⊢ ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) |
30 | 26, 29 | eqtri 2632 |
. . . . . . . 8
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) |
31 | 30 | eqeq2i 2622 |
. . . . . . 7
⊢ (𝑢 = 𝑂 ↔ 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊)))) |
32 | 31 | imbi2i 325 |
. . . . . 6
⊢ (((¬
𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂) ↔ ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))))) |
33 | 32 | ralbii 2963 |
. . . . 5
⊢
(∀𝑧 ∈
𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂) ↔ ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))))) |
34 | 17, 25, 33 | 3bitr4i 291 |
. . . 4
⊢
(∀𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
35 | 34 | a1i 11 |
. . 3
⊢ (𝑢 ∈ 𝐵 → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂))) |
36 | 35 | riotabiia 6528 |
. 2
⊢
(℩𝑢
∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
37 | | cdleme25cv.i |
. 2
⊢ 𝐼 = (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
38 | | cdleme25cv.e |
. 2
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
39 | 36, 37, 38 | 3eqtr4i 2642 |
1
⊢ 𝐼 = 𝐸 |