Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0moN Structured version   Visualization version   GIF version

Theorem cdleme0moN 34530
 Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0moN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑈,𝑟
Allowed substitution hints:   𝐻(𝑟)   𝐾(𝑟)   (𝑟)   (𝑟)   𝑊(𝑟)

Proof of Theorem cdleme0moN
StepHypRef Expression
1 simp23r 1176 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑅 𝑊)
2 neanior 2874 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
3 simpl33 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
4 simp23l 1175 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑅𝐴)
54adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝐴)
6 simprl 790 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝑃)
7 simprr 792 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅𝑄)
8 simpl32 1136 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 (𝑃 𝑄))
9 simpl1l 1105 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝐾 ∈ HL)
10 hlcvl 33664 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
119, 10syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝐾 ∈ CvLat)
12 simp21l 1171 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
1312adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑃𝐴)
14 simp22l 1173 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
1514adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑄𝐴)
16 simpl31 1135 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑃𝑄)
17 cdleme0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
18 cdleme0.l . . . . . . . . 9 = (le‘𝐾)
19 cdleme0.j . . . . . . . . 9 = (join‘𝐾)
2017, 18, 19cvlsupr2 33648 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2111, 13, 15, 5, 16, 20syl131anc 1331 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
226, 7, 8, 21mpbir3and 1238 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃 𝑅) = (𝑄 𝑅))
23 simp1l 1078 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
24 simp1r 1079 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑊𝐻)
25 simp21r 1172 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
26 simp31 1090 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
27 cdleme0.m . . . . . . . . 9 = (meet‘𝐾)
28 cdleme0.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
29 cdleme0.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
3018, 19, 27, 17, 28, 29lhpat2 34349 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
3123, 24, 12, 25, 14, 26, 30syl222anc 1334 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑈𝐴)
3231adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑈𝐴)
33 simpl1 1057 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl21 1132 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
35 simpl22 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3618, 19, 27, 17, 28, 29cdleme02N 34527 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ((𝑃 𝑈) = (𝑄 𝑈) ∧ 𝑈 𝑊))
3736simpld 474 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → (𝑃 𝑈) = (𝑄 𝑈))
3833, 34, 35, 16, 37syl121anc 1323 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → (𝑃 𝑈) = (𝑄 𝑈))
39 df-rmo 2904 . . . . . . 7 (∃*𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
40 oveq2 6557 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
41 oveq2 6557 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
4240, 41eqeq12d 2625 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
43 oveq2 6557 . . . . . . . . 9 (𝑟 = 𝑈 → (𝑃 𝑟) = (𝑃 𝑈))
44 oveq2 6557 . . . . . . . . 9 (𝑟 = 𝑈 → (𝑄 𝑟) = (𝑄 𝑈))
4543, 44eqeq12d 2625 . . . . . . . 8 (𝑟 = 𝑈 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑈) = (𝑄 𝑈)))
4642, 45rmoi 3496 . . . . . . 7 ((∃*𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ∧ (𝑅𝐴 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑈𝐴 ∧ (𝑃 𝑈) = (𝑄 𝑈))) → 𝑅 = 𝑈)
4739, 46syl3an1br 1357 . . . . . 6 ((∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ∧ (𝑅𝐴 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑈𝐴 ∧ (𝑃 𝑈) = (𝑄 𝑈))) → 𝑅 = 𝑈)
483, 5, 22, 32, 38, 47syl122anc 1327 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 = 𝑈)
4936simprd 478 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → 𝑈 𝑊)
5033, 34, 35, 16, 49syl121anc 1323 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑈 𝑊)
5148, 50eqbrtrd 4605 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ (𝑅𝑃𝑅𝑄)) → 𝑅 𝑊)
5251ex 449 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑅𝑃𝑅𝑄) → 𝑅 𝑊))
532, 52syl5bir 232 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (¬ (𝑅 = 𝑃𝑅 = 𝑄) → 𝑅 𝑊))
541, 53mt3d 139 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃*wmo 2459   ≠ wne 2780  ∃*wrmo 2899   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  CvLatclc 33570  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator