Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc5 Structured version   Visualization version   GIF version

Theorem cdlemc5 34500
Description: Lemma for cdlemc 34502. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l = (le‘𝐾)
cdlemc3.j = (join‘𝐾)
cdlemc3.m = (meet‘𝐾)
cdlemc3.a 𝐴 = (Atoms‘𝐾)
cdlemc3.h 𝐻 = (LHyp‘𝐾)
cdlemc3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemc3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Proof of Theorem cdlemc5
StepHypRef Expression
1 simp1l 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2 simp23l 1175 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
3 simp1 1054 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp21 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
5 cdlemc3.l . . . . . . 7 = (le‘𝐾)
6 cdlemc3.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 cdlemc3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 cdlemc3.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 34444 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
103, 4, 2, 9syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ∈ 𝐴)
11 cdlemc3.j . . . . . 6 = (join‘𝐾)
125, 11, 6hlatlej2 33680 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → (𝐹𝑄) (𝑄 (𝐹𝑄)))
131, 2, 10, 12syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) (𝑄 (𝐹𝑄)))
14 simp23 1089 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
15 cdlemc3.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
165, 11, 6, 7, 8, 15trljat1 34471 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
173, 4, 14, 16syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
1813, 17breqtrrd 4611 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) (𝑄 (𝑅𝐹)))
19 simp22 1088 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 cdlemc3.m . . . . 5 = (meet‘𝐾)
215, 11, 20, 6, 7, 8cdlemc2 34497 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
223, 4, 19, 14, 21syl112anc 1322 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
23 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
241, 23syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
25 eqid 2610 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2625, 6atbase 33594 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
272, 26syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄 ∈ (Base‘𝐾))
2825, 7, 8ltrncl 34429 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄 ∈ (Base‘𝐾)) → (𝐹𝑄) ∈ (Base‘𝐾))
293, 4, 27, 28syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ∈ (Base‘𝐾))
3025, 7, 8, 15trlcl 34469 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
313, 4, 30syl2anc 691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ (Base‘𝐾))
3225, 11latjcl 16874 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
3324, 27, 31, 32syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
34 simp22l 1173 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
3525, 6atbase 33594 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3634, 35syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
3725, 7, 8ltrncl 34429 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
383, 4, 36, 37syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ∈ (Base‘𝐾))
3925, 11, 6hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
401, 34, 2, 39syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
41 simp1r 1079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊𝐻)
4225, 7lhpbase 34302 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4341, 42syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾))
4425, 20latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4524, 40, 43, 44syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4625, 11latjcl 16874 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
4724, 38, 45, 46syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
4825, 5, 20latlem12 16901 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹𝑄) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))) → (((𝐹𝑄) (𝑄 (𝑅𝐹)) ∧ (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
4924, 29, 33, 47, 48syl13anc 1320 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝐹𝑄) (𝑄 (𝑅𝐹)) ∧ (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
5018, 22, 49mpbi2and 958 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
51 hlatl 33665 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
521, 51syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat)
53 simp3r 1083 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
545, 6, 7, 8, 15trlat 34474 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
553, 19, 4, 53, 54syl112anc 1322 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
565, 7, 8, 15trlle 34489 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
573, 4, 56syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
58 simp23r 1176 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 𝑊)
59 nbrne2 4603 . . . . . . 7 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅𝐹) ≠ 𝑄)
6059necomd 2837 . . . . . 6 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑄 ≠ (𝑅𝐹))
6157, 58, 60syl2anc 691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄 ≠ (𝑅𝐹))
62 eqid 2610 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
6311, 6, 62llni2 33816 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ 𝑄 ≠ (𝑅𝐹)) → (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾))
641, 2, 55, 61, 63syl31anc 1321 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾))
655, 6, 7, 8ltrnat 34444 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
663, 4, 34, 65syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ∈ 𝐴)
675, 11, 6hlatlej1 33679 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
681, 34, 66, 67syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 (𝑃 (𝐹𝑃)))
69 simp3l 1082 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 (𝑃 (𝐹𝑃)))
70 nbrne2 4603 . . . . . . 7 ((𝑃 (𝑃 (𝐹𝑃)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → 𝑃𝑄)
7168, 69, 70syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝑄)
725, 11, 20, 6, 7lhpat 34347 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
733, 19, 2, 71, 72syl112anc 1322 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
7425, 5, 20latmle2 16900 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
7524, 40, 43, 74syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) 𝑊)
765, 6, 7, 8ltrnel 34443 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
7776simprd 478 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝐹𝑃) 𝑊)
783, 4, 19, 77syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝐹𝑃) 𝑊)
79 nbrne2 4603 . . . . . . 7 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → ((𝑃 𝑄) 𝑊) ≠ (𝐹𝑃))
8079necomd 2837 . . . . . 6 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊))
8175, 78, 80syl2anc 691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊))
8211, 6, 62llni2 33816 . . . . 5 (((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) ∧ (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾))
831, 66, 73, 81, 82syl31anc 1321 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾))
845, 11, 20, 6, 7, 8, 15cdlemc4 34499 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
85843adant3r 1315 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
8625, 20latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾))
8724, 33, 47, 86syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾))
88 eqid 2610 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
8925, 5, 88, 6atlen0 33615 . . . . 5 (((𝐾 ∈ AtLat ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾) ∧ (𝐹𝑄) ∈ 𝐴) ∧ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))
9052, 87, 10, 50, 89syl31anc 1321 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))
9120, 88, 6, 622llnmat 33828 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾)) ∧ ((𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴)
921, 64, 83, 85, 90, 91syl32anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴)
935, 6atcmp 33616 . . 3 ((𝐾 ∈ AtLat ∧ (𝐹𝑄) ∈ 𝐴 ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴) → ((𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
9452, 10, 92, 93syl3anc 1318 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
9550, 94mpbid 221 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  0.cp0 16860  Latclat 16868  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  LLinesclln 33795  LHypclh 34288  LTrncltrn 34405  trLctrl 34463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464
This theorem is referenced by:  cdlemc  34502
  Copyright terms: Public domain W3C validator