HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3b Structured version   Visualization version   GIF version

Theorem cdj3lem3b 28683
Description: Lemma for cdj3i 28684. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem3b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.2 . . 3 𝐵S
2 cdj3lem2.1 . . 3 𝐴S
3 cdj3lem3.3 . . . 4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
41, 2shscomi 27606 . . . . 5 (𝐵 + 𝐴) = (𝐴 + 𝐵)
51sheli 27455 . . . . . . . . 9 (𝑤𝐵𝑤 ∈ ℋ)
62sheli 27455 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ ℋ)
7 ax-hvcom 27242 . . . . . . . . 9 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
85, 6, 7syl2an 493 . . . . . . . 8 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
98eqeq2d 2620 . . . . . . 7 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
109rexbidva 3031 . . . . . 6 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1110riotabiia 6528 . . . . 5 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
124, 11mpteq12i 4670 . . . 4 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
133, 12eqtr4i 2635 . . 3 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
141, 2, 13cdj3lem2b 28680 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
15 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
1615oveq1d 6564 . . . . . . 7 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
17 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥 + 𝑦) = (𝑡 + 𝑦))
1817fveq2d 6107 . . . . . . . 8 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
1918oveq2d 6565 . . . . . . 7 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
2016, 19breq12d 4596 . . . . . 6 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
21 fveq2 6103 . . . . . . . 8 (𝑦 = → (norm𝑦) = (norm))
2221oveq2d 6565 . . . . . . 7 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
23 oveq2 6557 . . . . . . . . 9 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
2423fveq2d 6107 . . . . . . . 8 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
2524oveq2d 6565 . . . . . . 7 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
2622, 25breq12d 4596 . . . . . 6 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
2720, 26cbvral2v 3155 . . . . 5 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
28 ralcom 3079 . . . . 5 (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
291sheli 27455 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ ℋ)
30 normcl 27366 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . 11 (𝑥𝐵 → (norm𝑥) ∈ ℝ)
3231recnd 9947 . . . . . . . . . 10 (𝑥𝐵 → (norm𝑥) ∈ ℂ)
332sheli 27455 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ ℋ)
34 normcl 27366 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
3533, 34syl 17 . . . . . . . . . . 11 (𝑦𝐴 → (norm𝑦) ∈ ℝ)
3635recnd 9947 . . . . . . . . . 10 (𝑦𝐴 → (norm𝑦) ∈ ℂ)
37 addcom 10101 . . . . . . . . . 10 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
3832, 36, 37syl2an 493 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
39 ax-hvcom 27242 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
4029, 33, 39syl2an 493 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐴) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
4140fveq2d 6107 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐴) → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑦 + 𝑥)))
4241oveq2d 6565 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑦 + 𝑥))))
4338, 42breq12d 4596 . . . . . . . 8 ((𝑥𝐵𝑦𝐴) → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4443ralbidva 2968 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4544ralbiia 2962 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))))
46 fveq2 6103 . . . . . . . . 9 (𝑥 = → (norm𝑥) = (norm))
4746oveq2d 6565 . . . . . . . 8 (𝑥 = → ((norm𝑦) + (norm𝑥)) = ((norm𝑦) + (norm)))
48 oveq2 6557 . . . . . . . . . 10 (𝑥 = → (𝑦 + 𝑥) = (𝑦 + ))
4948fveq2d 6107 . . . . . . . . 9 (𝑥 = → (norm‘(𝑦 + 𝑥)) = (norm‘(𝑦 + )))
5049oveq2d 6565 . . . . . . . 8 (𝑥 = → (𝑣 · (norm‘(𝑦 + 𝑥))) = (𝑣 · (norm‘(𝑦 + ))))
5147, 50breq12d 4596 . . . . . . 7 (𝑥 = → (((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + )))))
52 fveq2 6103 . . . . . . . . 9 (𝑦 = 𝑡 → (norm𝑦) = (norm𝑡))
5352oveq1d 6564 . . . . . . . 8 (𝑦 = 𝑡 → ((norm𝑦) + (norm)) = ((norm𝑡) + (norm)))
54 oveq1 6556 . . . . . . . . . 10 (𝑦 = 𝑡 → (𝑦 + ) = (𝑡 + ))
5554fveq2d 6107 . . . . . . . . 9 (𝑦 = 𝑡 → (norm‘(𝑦 + )) = (norm‘(𝑡 + )))
5655oveq2d 6565 . . . . . . . 8 (𝑦 = 𝑡 → (𝑣 · (norm‘(𝑦 + ))) = (𝑣 · (norm‘(𝑡 + ))))
5753, 56breq12d 4596 . . . . . . 7 (𝑦 = 𝑡 → (((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + ))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
5851, 57cbvral2v 3155 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
5945, 58bitr2i 264 . . . . 5 (∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
6027, 28, 593bitri 285 . . . 4 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
6160anbi2i 726 . . 3 ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
6261rexbii 3023 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
632, 1shscomi 27606 . . . . 5 (𝐴 + 𝐵) = (𝐵 + 𝐴)
6463raleqi 3119 . . . 4 (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)))
6564anbi2i 726 . . 3 ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6665rexbii 3023 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6714, 62, 663imtr4i 280 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  chil 27160   + cva 27161  normcno 27164   S csh 27169   + cph 27172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-ablo 26783  df-hnorm 27209  df-hvsub 27212  df-sh 27448  df-ch0 27494  df-shs 27551
This theorem is referenced by:  cdj3i  28684
  Copyright terms: Public domain W3C validator