Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3a Structured version   Visualization version   GIF version

Theorem cdj3lem3a 28682
 Description: Lemma for cdj3i 28684. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3a ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3a
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . . 4 𝐴S
2 cdj3lem2.2 . . . 4 𝐵S
31, 2shseli 27559 . . 3 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢))
4 cdj3lem3.3 . . . . . . . . . 10 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem3 28681 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) = 𝑢)
6 simp2 1055 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → 𝑢𝐵)
75, 6eqeltrd 2688 . . . . . . . 8 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵)
873expa 1257 . . . . . . 7 (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵)
9 fveq2 6103 . . . . . . . 8 (𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) = (𝑇‘(𝑣 + 𝑢)))
109eleq1d 2672 . . . . . . 7 (𝐶 = (𝑣 + 𝑢) → ((𝑇𝐶) ∈ 𝐵 ↔ (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵))
118, 10syl5ibr 235 . . . . . 6 (𝐶 = (𝑣 + 𝑢) → (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵))
1211expd 451 . . . . 5 (𝐶 = (𝑣 + 𝑢) → ((𝑣𝐴𝑢𝐵) → ((𝐴𝐵) = 0 → (𝑇𝐶) ∈ 𝐵)))
1312com13 86 . . . 4 ((𝐴𝐵) = 0 → ((𝑣𝐴𝑢𝐵) → (𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) ∈ 𝐵)))
1413rexlimdvv 3019 . . 3 ((𝐴𝐵) = 0 → (∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) ∈ 𝐵))
153, 14syl5bi 231 . 2 ((𝐴𝐵) = 0 → (𝐶 ∈ (𝐴 + 𝐵) → (𝑇𝐶) ∈ 𝐵))
1615impcom 445 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ∩ cin 3539   ↦ cmpt 4643  ‘cfv 5804  ℩crio 6510  (class class class)co 6549   +ℎ cva 27161   Sℋ csh 27169   +ℋ cph 27172  0ℋc0h 27176 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-grpo 26731  df-ablo 26783  df-hvsub 27212  df-sh 27448  df-ch0 27494  df-shs 27551 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator