MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqal Structured version   Visualization version   GIF version

Theorem cdeqal 3391
Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cdeqal CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cdeqal
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 3388 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32albidv 1836 . 2 (𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
43cdeqi 3387 1 CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wal 1473  CondEqwcdeq 3385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827
This theorem depends on definitions:  df-bi 196  df-cdeq 3386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator