Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1swrdeq Structured version   Visualization version   GIF version

Theorem ccats1swrdeq 13321
 Description: The last symbol of a word concatenated with the subword of the word having length less by 1 than the word results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018.)
Assertion
Ref Expression
ccats1swrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“( lastS ‘𝑈)”⟩)))

Proof of Theorem ccats1swrdeq
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → (𝑊 ++ ⟨“( lastS ‘𝑈)”⟩) = ((𝑈 substr ⟨0, (#‘𝑊)⟩) ++ ⟨“( lastS ‘𝑈)”⟩))
21adantl 481 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) ∧ 𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩)) → (𝑊 ++ ⟨“( lastS ‘𝑈)”⟩) = ((𝑈 substr ⟨0, (#‘𝑊)⟩) ++ ⟨“( lastS ‘𝑈)”⟩))
3 oveq1 6556 . . . . . . . . . 10 ((#‘𝑈) = ((#‘𝑊) + 1) → ((#‘𝑈) − 1) = (((#‘𝑊) + 1) − 1))
433ad2ant3 1077 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → ((#‘𝑈) − 1) = (((#‘𝑊) + 1) − 1))
5 lencl 13179 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
6 nn0cn 11179 . . . . . . . . . . 11 ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℂ)
7 pncan1 10333 . . . . . . . . . . 11 ((#‘𝑊) ∈ ℂ → (((#‘𝑊) + 1) − 1) = (#‘𝑊))
85, 6, 73syl 18 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (((#‘𝑊) + 1) − 1) = (#‘𝑊))
983ad2ant1 1075 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (((#‘𝑊) + 1) − 1) = (#‘𝑊))
104, 9eqtr2d 2645 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (#‘𝑊) = ((#‘𝑈) − 1))
1110opeq2d 4347 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → ⟨0, (#‘𝑊)⟩ = ⟨0, ((#‘𝑈) − 1)⟩)
1211oveq2d 6565 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (𝑈 substr ⟨0, (#‘𝑊)⟩) = (𝑈 substr ⟨0, ((#‘𝑈) − 1)⟩))
1312oveq1d 6564 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → ((𝑈 substr ⟨0, (#‘𝑊)⟩) ++ ⟨“( lastS ‘𝑈)”⟩) = ((𝑈 substr ⟨0, ((#‘𝑈) − 1)⟩) ++ ⟨“( lastS ‘𝑈)”⟩))
14 simp2 1055 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
15 nn0p1gt0 11199 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 → 0 < ((#‘𝑊) + 1))
165, 15syl 17 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → 0 < ((#‘𝑊) + 1))
17163ad2ant1 1075 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 0 < ((#‘𝑊) + 1))
18 breq2 4587 . . . . . . . . 9 ((#‘𝑈) = ((#‘𝑊) + 1) → (0 < (#‘𝑈) ↔ 0 < ((#‘𝑊) + 1)))
19183ad2ant3 1077 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (0 < (#‘𝑈) ↔ 0 < ((#‘𝑊) + 1)))
2017, 19mpbird 246 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 0 < (#‘𝑈))
21 hashneq0 13016 . . . . . . . 8 (𝑈 ∈ Word 𝑉 → (0 < (#‘𝑈) ↔ 𝑈 ≠ ∅))
22213ad2ant2 1076 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (0 < (#‘𝑈) ↔ 𝑈 ≠ ∅))
2320, 22mpbid 221 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 𝑈 ≠ ∅)
24 swrdccatwrd 13320 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → ((𝑈 substr ⟨0, ((#‘𝑈) − 1)⟩) ++ ⟨“( lastS ‘𝑈)”⟩) = 𝑈)
2514, 23, 24syl2anc 691 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → ((𝑈 substr ⟨0, ((#‘𝑈) − 1)⟩) ++ ⟨“( lastS ‘𝑈)”⟩) = 𝑈)
2613, 25eqtrd 2644 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → ((𝑈 substr ⟨0, (#‘𝑊)⟩) ++ ⟨“( lastS ‘𝑈)”⟩) = 𝑈)
2726adantr 480 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) ∧ 𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩)) → ((𝑈 substr ⟨0, (#‘𝑊)⟩) ++ ⟨“( lastS ‘𝑈)”⟩) = 𝑈)
282, 27eqtr2d 2645 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) ∧ 𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩)) → 𝑈 = (𝑊 ++ ⟨“( lastS ‘𝑈)”⟩))
2928ex 449 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“( lastS ‘𝑈)”⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874  ⟨cop 4131   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   − cmin 10145  ℕ0cn0 11169  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149   substr csubstr 13150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158 This theorem is referenced by:  ccats1swrdeqrex  13330  ccats1swrdeqbi  13349
 Copyright terms: Public domain W3C validator