Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexv2 Structured version   Visualization version   GIF version

Theorem cbvrexv2 3536
 Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvralv2.1 (𝑥 = 𝑦 → (𝜓𝜒))
cbvralv2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvrexv2 (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒)
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvrexv2
StepHypRef Expression
1 nfcv 2751 . 2 𝑦𝐴
2 nfcv 2751 . 2 𝑥𝐵
3 nfv 1830 . 2 𝑦𝜓
4 nfv 1830 . 2 𝑥𝜒
5 cbvralv2.2 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvralv2.1 . 2 (𝑥 = 𝑦 → (𝜓𝜒))
71, 2, 3, 4, 5, 6cbvrexcsf 3532 1 (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475  ∃wrex 2897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-sbc 3403  df-csb 3500 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator