Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviotav | Structured version Visualization version GIF version |
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
cbviotav.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotav | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotav.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | nfv 1830 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1830 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | cbviota 5773 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ℩cio 5766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-sn 4126 df-uni 4373 df-iota 5768 |
This theorem is referenced by: oeeui 7569 ellimciota 38681 fourierdlem96 39095 fourierdlem97 39096 fourierdlem98 39097 fourierdlem99 39098 fourierdlem105 39104 fourierdlem106 39105 fourierdlem108 39107 fourierdlem110 39109 fourierdlem112 39111 fourierdlem113 39112 fourierdlem115 39114 |
Copyright terms: Public domain | W3C validator |