Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvex4v Structured version   Visualization version   GIF version

Theorem cbvex4v 2277
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cbvex4v.1 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))
cbvex4v.2 ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))
Assertion
Ref Expression
cbvex4v (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
Distinct variable groups:   𝑧,𝑤,𝜒   𝑣,𝑢,𝜑   𝑥,𝑦,𝜓   𝑓,𝑔,𝜓   𝑤,𝑓   𝑧,𝑔   𝑤,𝑢,𝑥,𝑦,𝑧,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔)

Proof of Theorem cbvex4v
StepHypRef Expression
1 cbvex4v.1 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))
212exbidv 1839 . . 3 ((𝑥 = 𝑣𝑦 = 𝑢) → (∃𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝜓))
32cbvex2v 2275 . 2 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑧𝑤𝜓)
4 cbvex4v.2 . . . 4 ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))
54cbvex2v 2275 . . 3 (∃𝑧𝑤𝜓 ↔ ∃𝑓𝑔𝜒)
652exbii 1765 . 2 (∃𝑣𝑢𝑧𝑤𝜓 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
73, 6bitri 263 1 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-nf 1701 This theorem is referenced by:  addsrmo  9773  mulsrmo  9774
 Copyright terms: Public domain W3C validator