Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvcllem | Structured version Visualization version GIF version |
Description: Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
Ref | Expression |
---|---|
cbvcllem.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvcllem | ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcllem.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cleq2lem 36933 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑋 ⊆ 𝑥 ∧ 𝜑) ↔ (𝑋 ⊆ 𝑦 ∧ 𝜓))) |
3 | 2 | cbvabv 2734 | 1 ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 {cab 2596 ⊆ wss 3540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-in 3547 df-ss 3554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |