Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbncms Structured version   Visualization version   GIF version

Theorem cbncms 27105
 Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSet‘𝑈)
iscbn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
cbncms (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cbncms
StepHypRef Expression
1 iscbn.x . . 3 𝑋 = (BaseSet‘𝑈)
2 iscbn.8 . . 3 𝐷 = (IndMet‘𝑈)
31, 2iscbn 27104 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 479 1 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  CMetcms 22860  NrmCVeccnv 26823  BaseSetcba 26825  IndMetcims 26830  CBanccbn 27102 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-cbn 27103 This theorem is referenced by:  bnsscmcl  27108  ubthlem1  27110  ubthlem2  27111  minvecolem4a  27117  hlcmet  27134
 Copyright terms: Public domain W3C validator