Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Visualization version   GIF version

Theorem causs 22904
 Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem causs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 22888 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
2 elfvdm 6130 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 cnex 9896 . . . . . . . . . . 11 ℂ ∈ V
4 elpmg 7759 . . . . . . . . . . 11 ((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
52, 3, 4sylancl 693 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (𝑋pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋))))
65biimpa 500 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
71, 6syldan 486 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → (Fun 𝐹𝐹 ⊆ (ℂ × 𝑋)))
87simprd 478 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ⊆ (ℂ × 𝑋))
9 rnss 5275 . . . . . . 7 (𝐹 ⊆ (ℂ × 𝑋) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
108, 9syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ ran (ℂ × 𝑋))
11 rnxpss 5485 . . . . . 6 ran (ℂ × 𝑋) ⊆ 𝑋
1210, 11syl6ss 3580 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
1312adantlr 747 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑋)
14 frn 5966 . . . . 5 (𝐹:ℕ⟶𝑌 → ran 𝐹𝑌)
1514ad2antlr 759 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹𝑌)
1613, 15ssind 3799 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) ∧ 𝐹 ∈ (Cau‘𝐷)) → ran 𝐹 ⊆ (𝑋𝑌))
1716ex 449 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) → ran 𝐹 ⊆ (𝑋𝑌)))
18 xmetres 21979 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
19 caufpm 22888 . . . . . . . . 9 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
2018, 19sylan 487 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ))
21 inex1g 4729 . . . . . . . . . . 11 (𝑋 ∈ dom ∞Met → (𝑋𝑌) ∈ V)
222, 21syl 17 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ∈ V)
23 elpmg 7759 . . . . . . . . . 10 (((𝑋𝑌) ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2422, 3, 23sylancl 693 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ ((𝑋𝑌) ↑pm ℂ) ↔ (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌)))))
2524biimpa 500 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ ((𝑋𝑌) ↑pm ℂ)) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2620, 25syldan 486 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → (Fun 𝐹𝐹 ⊆ (ℂ × (𝑋𝑌))))
2726simprd 478 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ⊆ (ℂ × (𝑋𝑌)))
28 rnss 5275 . . . . . 6 (𝐹 ⊆ (ℂ × (𝑋𝑌)) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
2927, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ ran (ℂ × (𝑋𝑌)))
30 rnxpss 5485 . . . . 5 ran (ℂ × (𝑋𝑌)) ⊆ (𝑋𝑌)
3129, 30syl6ss 3580 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → ran 𝐹 ⊆ (𝑋𝑌))
3231ex 449 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
3332adantr 480 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) → ran 𝐹 ⊆ (𝑋𝑌)))
34 ffn 5958 . . . 4 (𝐹:ℕ⟶𝑌𝐹 Fn ℕ)
35 df-f 5808 . . . . 5 (𝐹:ℕ⟶(𝑋𝑌) ↔ (𝐹 Fn ℕ ∧ ran 𝐹 ⊆ (𝑋𝑌)))
3635simplbi2 653 . . . 4 (𝐹 Fn ℕ → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
3734, 36syl 17 . . 3 (𝐹:ℕ⟶𝑌 → (ran 𝐹 ⊆ (𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌)))
38 inss2 3796 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑌
3938a1i 11 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑌)
40 fss 5969 . . . . . . . 8 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑌) → 𝐹:ℕ⟶𝑌)
4139, 40sylan2 490 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐹:ℕ⟶𝑌)
4241ancoms 468 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑌)
43 ffvelrn 6265 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑌)
4443adantr 480 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ∈ 𝑌)
45 eluznn 11634 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ ℕ)
46 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑌𝑧 ∈ ℕ) → (𝐹𝑧) ∈ 𝑌)
4745, 46sylan2 490 . . . . . . . . . . . 12 ((𝐹:ℕ⟶𝑌 ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ (ℤ𝑦))) → (𝐹𝑧) ∈ 𝑌)
4847anassrs 678 . . . . . . . . . . 11 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ∈ 𝑌)
4944, 48ovresd 6699 . . . . . . . . . 10 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → ((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) = ((𝐹𝑦)𝐷(𝐹𝑧)))
5049breq1d 4593 . . . . . . . . 9 (((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) ∧ 𝑧 ∈ (ℤ𝑦)) → (((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5150ralbidva 2968 . . . . . . . 8 ((𝐹:ℕ⟶𝑌𝑦 ∈ ℕ) → (∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5251rexbidva 3031 . . . . . . 7 (𝐹:ℕ⟶𝑌 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5352ralbidv 2969 . . . . . 6 (𝐹:ℕ⟶𝑌 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
5442, 53syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
55 nnuz 11599 . . . . . 6 ℕ = (ℤ‘1)
5618adantr 480 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
57 1zzd 11285 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 1 ∈ ℤ)
58 eqidd 2611 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐹𝑧))
59 eqidd 2611 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = (𝐹𝑦))
60 simpr 476 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶(𝑋𝑌))
6155, 56, 57, 58, 59, 60iscauf 22886 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)(𝐷 ↾ (𝑌 × 𝑌))(𝐹𝑧)) < 𝑥))
62 simpl 472 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
63 id 22 . . . . . . 7 (𝐹:ℕ⟶(𝑋𝑌) → 𝐹:ℕ⟶(𝑋𝑌))
64 inss1 3795 . . . . . . . 8 (𝑋𝑌) ⊆ 𝑋
6564a1i 11 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑋𝑌) ⊆ 𝑋)
66 fss 5969 . . . . . . 7 ((𝐹:ℕ⟶(𝑋𝑌) ∧ (𝑋𝑌) ⊆ 𝑋) → 𝐹:ℕ⟶𝑋)
6763, 65, 66syl2anr 494 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → 𝐹:ℕ⟶𝑋)
6855, 62, 57, 58, 59, 67iscauf 22886 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)((𝐹𝑦)𝐷(𝐹𝑧)) < 𝑥))
6954, 61, 683bitr4rd 300 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶(𝑋𝑌)) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
7069ex 449 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹:ℕ⟶(𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7137, 70sylan9r 688 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (ran 𝐹 ⊆ (𝑋𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))))
7217, 33, 71pm5.21ndd 368 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039   ↾ cres 5040  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑pm cpm 7745  ℂcc 9813  1c1 9816   < clt 9953  ℕcn 10897  ℤ≥cuz 11563  ℝ+crp 11708  ∞Metcxmt 19552  Caucca 22859 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-z 11255  df-uz 11564  df-rp 11709  df-xneg 11822  df-xadd 11823  df-psmet 19559  df-xmet 19560  df-bl 19562  df-cau 22862 This theorem is referenced by:  minvecolem4a  27117  hhsscms  27520
 Copyright terms: Public domain W3C validator