MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Visualization version   GIF version

Theorem caurcvgr 14252
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvgr (𝜑𝐹𝑟 (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caurcvgr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 caurcvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
3 caurcvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
4 caurcvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5 1rp 11712 . . . . . 6 1 ∈ ℝ+
65a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
71, 2, 3, 4, 6caucvgrlem 14251 . . . 4 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))))
8 simpl 472 . . . . 5 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
98rexlimivw 3011 . . . 4 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
107, 9syl 17 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1110recnd 9947 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
121adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
132adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝐴⟶ℝ)
143adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → sup(𝐴, ℝ*, < ) = +∞)
154adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
16 simpr 476 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
17 3re 10971 . . . . . . . . 9 3 ∈ ℝ
18 3pos 10991 . . . . . . . . 9 0 < 3
1917, 18elrpii 11711 . . . . . . . 8 3 ∈ ℝ+
20 rpdivcl 11732 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2116, 19, 20sylancl 693 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2212, 13, 14, 15, 21caucvgrlem 14251 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
23 simpr 476 . . . . . . 7 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2423reximi 2994 . . . . . 6 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2522, 24syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
26 ssrexv 3630 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
2712, 25, 26sylc 63 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
28 rpcn 11717 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
2928adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
30 3cn 10972 . . . . . . . . 9 3 ∈ ℂ
3130a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ∈ ℂ)
32 3ne0 10992 . . . . . . . . 9 3 ≠ 0
3332a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ≠ 0)
3429, 31, 33divcan2d 10682 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (3 · (𝑦 / 3)) = 𝑦)
3534breq2d 4595 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)) ↔ (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3635imbi2d 329 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3736rexralbidv 3040 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3827, 37mpbid 221 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3938ralrimiva 2949 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
40 ax-resscn 9872 . . . 4 ℝ ⊆ ℂ
41 fss 5969 . . . 4 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
422, 40, 41sylancl 693 . . 3 (𝜑𝐹:𝐴⟶ℂ)
43 eqidd 2611 . . 3 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
4442, 1, 43rlim 14074 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))))
4511, 39, 44mpbir2and 959 1 (𝜑𝐹𝑟 (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  3c3 10948  +crp 11708  abscabs 13822  lim supclsp 14049  𝑟 crli 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-rlim 14068
This theorem is referenced by:  caucvgrlem2  14253  caurcvg  14255
  Copyright terms: Public domain W3C validator