Step | Hyp | Ref
| Expression |
1 | | caurcvgr.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
2 | | caurcvgr.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | | reex 9906 |
. . . . . . . . 9
⊢ ℝ
∈ V |
4 | 3 | ssex 4730 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) |
6 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
7 | | fex2 7014 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) →
𝐹 ∈
V) |
8 | 1, 5, 6, 7 | syl3anc 1318 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
9 | | limsupcl 14052 |
. . . . . 6
⊢ (𝐹 ∈ V → (lim
sup‘𝐹) ∈
ℝ*) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈
ℝ*) |
12 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ) |
13 | | simprl 790 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑗 ∈ 𝐴) |
14 | 12, 13 | ffvelrnd 6268 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (𝐹‘𝑗) ∈ ℝ) |
15 | | caucvgrlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
16 | 15 | rpred 11748 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ℝ) |
17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑅 ∈ ℝ) |
18 | 14, 17 | readdcld 9948 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) + 𝑅) ∈ ℝ) |
19 | | mnfxr 9975 |
. . . . . 6
⊢ -∞
∈ ℝ* |
20 | 19 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ ∈
ℝ*) |
21 | 14, 17 | resubcld 10337 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ∈ ℝ) |
22 | 21 | rexrd 9968 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ∈
ℝ*) |
23 | 21 | mnfltd 11834 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ < ((𝐹‘𝑗) − 𝑅)) |
24 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ) |
25 | | ressxr 9962 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
26 | | fss 5969 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℝ*) → 𝐹:𝐴⟶ℝ*) |
27 | 1, 25, 26 | sylancl 693 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*) |
29 | | caurcvgr.3 |
. . . . . . 7
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) =
+∞) |
31 | 24, 13 | sseldd 3569 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑗 ∈ ℝ) |
32 | | simprr 792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
33 | | breq2 4587 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑚)) |
34 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
35 | 34 | oveq1d 6564 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) − (𝐹‘𝑗)) = ((𝐹‘𝑚) − (𝐹‘𝑗))) |
36 | 35 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑚) − (𝐹‘𝑗)))) |
37 | 36 | breq1d 4593 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅 ↔ (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
38 | 33, 37 | imbi12d 333 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) ↔ (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅))) |
39 | 38 | cbvralv 3147 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
40 | 32, 39 | sylib 207 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
41 | 12 | ffvelrnda 6267 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝐹‘𝑚) ∈ ℝ) |
42 | 14 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ) |
43 | 41, 42 | resubcld 10337 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝐹‘𝑚) − (𝐹‘𝑗)) ∈ ℝ) |
44 | 43 | recnd 9947 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝐹‘𝑚) − (𝐹‘𝑗)) ∈ ℂ) |
45 | 44 | abscld 14023 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ) |
46 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → 𝑅 ∈ ℝ) |
47 | | ltle 10005 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅)) |
48 | 45, 46, 47 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅)) |
49 | 41, 42, 46 | absdifled 14021 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅 ↔ (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
50 | 48, 49 | sylibd 228 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
51 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) |
52 | 50, 51 | syl6 34 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
53 | 52 | imim2d 55 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) → (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
54 | 53 | ralimdva 2945 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
55 | 40, 54 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
56 | | breq1 4586 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝑛 ≤ 𝑚 ↔ 𝑗 ≤ 𝑚)) |
57 | 56 | imbi1d 330 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → ((𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) ↔ (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
58 | 57 | ralbidv 2969 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
59 | 58 | rspcev 3282 |
. . . . . . 7
⊢ ((𝑗 ∈ ℝ ∧
∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
60 | 31, 55, 59 | syl2anc 691 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
61 | 24, 28, 22, 30, 60 | limsupbnd2 14062 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ≤ (lim sup‘𝐹)) |
62 | 20, 22, 11, 23, 61 | xrltletrd 11868 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ < (lim
sup‘𝐹)) |
63 | 18 | rexrd 9968 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) + 𝑅) ∈
ℝ*) |
64 | 45 | adantrr 749 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ) |
65 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈ ℝ) |
66 | | simprl 790 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑚 ∈ 𝐴) |
67 | | simplrr 797 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
68 | | simprr 792 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑗 ≤ 𝑚) |
69 | 38 | rspcv 3278 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) → (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅))) |
70 | 66, 67, 68, 69 | syl3c 64 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) |
71 | 64, 65, 70 | ltled 10064 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅) |
72 | 41 | adantrr 749 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ∈ ℝ) |
73 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑗) ∈ ℝ) |
74 | 72, 73, 65 | absdifled 14021 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅 ↔ (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
75 | 71, 74 | mpbid 221 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
76 | 75 | simprd 478 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) |
77 | 76 | expr 641 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
78 | 77 | ralrimiva 2949 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
79 | 56 | imbi1d 330 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) ↔ (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
80 | 79 | ralbidv 2969 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → (∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
81 | 80 | rspcev 3282 |
. . . . . 6
⊢ ((𝑗 ∈ ℝ ∧
∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
82 | 31, 78, 81 | syl2anc 691 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
83 | 24, 28, 63, 82 | limsupbnd1 14061 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅)) |
84 | | xrre 11874 |
. . . 4
⊢ ((((lim
sup‘𝐹) ∈
ℝ* ∧ ((𝐹‘𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ) |
85 | 11, 18, 62, 83, 84 | syl22anc 1319 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ) |
86 | 85 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ∈ ℝ) |
87 | 72, 86 | resubcld 10337 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (lim sup‘𝐹)) ∈ ℝ) |
88 | 87 | recnd 9947 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (lim sup‘𝐹)) ∈ ℂ) |
89 | 88 | abscld 14023 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) ∈ ℝ) |
90 | | 2re 10967 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
91 | | remulcl 9900 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ 𝑅
∈ ℝ) → (2 · 𝑅) ∈ ℝ) |
92 | 90, 65, 91 | sylancr 694 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) ∈ ℝ) |
93 | | 3re 10971 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
94 | | remulcl 9900 |
. . . . . . . 8
⊢ ((3
∈ ℝ ∧ 𝑅
∈ ℝ) → (3 · 𝑅) ∈ ℝ) |
95 | 93, 65, 94 | sylancr 694 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (3 · 𝑅) ∈ ℝ) |
96 | 72 | recnd 9947 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ∈ ℂ) |
97 | 86 | recnd 9947 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ∈ ℂ) |
98 | 96, 97 | abssubd 14040 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹‘𝑚)))) |
99 | 72, 92 | resubcld 10337 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ∈ ℝ) |
100 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ∈ ℝ) |
101 | 65 | recnd 9947 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈ ℂ) |
102 | 101 | 2timesd 11152 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅)) |
103 | 102 | oveq2d 6565 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) = ((𝐹‘𝑚) − (𝑅 + 𝑅))) |
104 | 96, 101, 101 | subsub4d 10302 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) − 𝑅) = ((𝐹‘𝑚) − (𝑅 + 𝑅))) |
105 | 103, 104 | eqtr4d 2647 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) = (((𝐹‘𝑚) − 𝑅) − 𝑅)) |
106 | 72, 65 | resubcld 10337 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − 𝑅) ∈ ℝ) |
107 | 72, 65, 73 | lesubaddd 10503 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) ≤ (𝐹‘𝑗) ↔ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
108 | 76, 107 | mpbird 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − 𝑅) ≤ (𝐹‘𝑗)) |
109 | 106, 73, 65, 108 | lesub1dd 10522 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) − 𝑅) ≤ ((𝐹‘𝑗) − 𝑅)) |
110 | 105, 109 | eqbrtrd 4605 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ≤ ((𝐹‘𝑗) − 𝑅)) |
111 | 61 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ≤ (lim sup‘𝐹)) |
112 | 99, 100, 86, 110, 111 | letrd 10073 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹)) |
113 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ∈ ℝ) |
114 | 72, 92 | readdcld 9948 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + (2 · 𝑅)) ∈ ℝ) |
115 | 83 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅)) |
116 | 72, 65 | readdcld 9948 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + 𝑅) ∈ ℝ) |
117 | 75, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) |
118 | 73, 65, 72 | lesubaddd 10503 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ↔ (𝐹‘𝑗) ≤ ((𝐹‘𝑚) + 𝑅))) |
119 | 117, 118 | mpbid 221 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑗) ≤ ((𝐹‘𝑚) + 𝑅)) |
120 | 73, 116, 65, 119 | leadd1dd 10520 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ≤ (((𝐹‘𝑚) + 𝑅) + 𝑅)) |
121 | 96, 101, 101 | addassd 9941 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) + 𝑅) + 𝑅) = ((𝐹‘𝑚) + (𝑅 + 𝑅))) |
122 | 102 | oveq2d 6565 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + (2 · 𝑅)) = ((𝐹‘𝑚) + (𝑅 + 𝑅))) |
123 | 121, 122 | eqtr4d 2647 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) + 𝑅) + 𝑅) = ((𝐹‘𝑚) + (2 · 𝑅))) |
124 | 120, 123 | breqtrd 4609 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ≤ ((𝐹‘𝑚) + (2 · 𝑅))) |
125 | 86, 113, 114, 115, 124 | letrd 10073 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ≤ ((𝐹‘𝑚) + (2 · 𝑅))) |
126 | 86, 72, 92 | absdifled 14021 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹‘𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹‘𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹‘𝑚) + (2 · 𝑅))))) |
127 | 112, 125,
126 | mpbir2and 959 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹‘𝑚))) ≤ (2 · 𝑅)) |
128 | 98, 127 | eqbrtrd 4605 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅)) |
129 | | 2lt3 11072 |
. . . . . . . 8
⊢ 2 <
3 |
130 | 90 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 2 ∈ ℝ) |
131 | 93 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 3 ∈ ℝ) |
132 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑅 ∈
ℝ+) |
133 | 132 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈
ℝ+) |
134 | 130, 131,
133 | ltmul1d 11789 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅))) |
135 | 129, 134 | mpbii 222 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) < (3 · 𝑅)) |
136 | 89, 92, 95, 128, 135 | lelttrd 10074 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)) |
137 | 136 | expr 641 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
138 | 137 | ralrimiva 2949 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
139 | 34 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) − (lim sup‘𝐹)) = ((𝐹‘𝑚) − (lim sup‘𝐹))) |
140 | 139 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) = (abs‘((𝐹‘𝑚) − (lim sup‘𝐹)))) |
141 | 140 | breq1d 4593 |
. . . . . 6
⊢ (𝑘 = 𝑚 → ((abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅) ↔ (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
142 | 33, 141 | imbi12d 333 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))) |
143 | 142 | cbvralv 3147 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
144 | 138, 143 | sylibr 223 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))) |
145 | 85, 144 | jca 553 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) |
146 | | caurcvgr.4 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
147 | | breq2 4587 |
. . . . . 6
⊢ (𝑥 = 𝑅 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
148 | 147 | imbi2d 329 |
. . . . 5
⊢ (𝑥 = 𝑅 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
149 | 148 | rexralbidv 3040 |
. . . 4
⊢ (𝑥 = 𝑅 → (∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
150 | 149 | rspcv 3278 |
. . 3
⊢ (𝑅 ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
151 | 15, 146, 150 | sylc 63 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
152 | 145, 151 | reximddv 3001 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) |