MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau3lem Structured version   Visualization version   GIF version

Theorem cau3lem 13942
Description: Lemma for cau3 13943. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
cau3lem.1 𝑍 ⊆ ℤ
cau3lem.2 (𝜏𝜓)
cau3lem.3 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
cau3lem.4 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
cau3lem.5 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
cau3lem.6 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
cau3lem.7 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
Assertion
Ref Expression
cau3lem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
Distinct variable groups:   𝑘,𝑚,𝜒   𝑥,𝑘,𝐷,𝑚   𝑘,𝐹,𝑚,𝑥   𝑗,𝑘,𝑚,𝑥,𝜑   𝑘,𝐺,𝑚,𝑥   𝜓,𝑚,𝑥   𝜏,𝑥   𝜃,𝑘   𝑥,𝑍
Allowed substitution hints:   𝜓(𝑗,𝑘)   𝜒(𝑥,𝑗)   𝜃(𝑥,𝑗,𝑚)   𝜏(𝑗,𝑘,𝑚)   𝐷(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝑍(𝑗,𝑘,𝑚)

Proof of Theorem cau3lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq2 4587 . . . . . 6 (𝑥 = 𝑧 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
21anbi2d 736 . . . . 5 (𝑥 = 𝑧 → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
32rexralbidv 3040 . . . 4 (𝑥 = 𝑧 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧)))
43cbvralv 3147 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧))
5 rphalfcl 11734 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 4587 . . . . . . . . . 10 (𝑧 = (𝑥 / 2) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
76anbi2d 736 . . . . . . . . 9 (𝑧 = (𝑥 / 2) → ((𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ (𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
87rexralbidv 3040 . . . . . . . 8 (𝑧 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
98rspcv 3278 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
1110adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))))
12 cau3lem.2 . . . . . . . . . 10 (𝜏𝜓)
1312ralimi 2936 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)𝜏 → ∀𝑘 ∈ (ℤ𝑗)𝜓)
14 r19.26 3046 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
15 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
16 cau3lem.4 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝜓𝜃))
1815oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑗)) = ((𝐹𝑚)𝐷(𝐹𝑗)))
1918fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))))
2019breq1d 4593 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2117, 20anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2221cbvralv 3147 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2322biimpi 205 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))
2423a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2514, 24syl5bir 232 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
2625expdimp 452 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))))
27 cau3lem.1 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
2827sseli 3564 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ ℤ)
29 uzid 11578 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
31 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
32 cau3lem.3 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))
3331, 32syl 17 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝜓𝜒))
3433rspcva 3280 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3530, 34sylan 487 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3635adantll 746 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → 𝜒)
3726, 36jctild 564 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))))
38 simplll 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜑)
39 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜃)
40 simplrl 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜒)
41 cau3lem.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4238, 39, 40, 41syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
4342breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)))
4443anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2))))
45 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝜓)
46 simpllr 795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ+)
4746rpred 11748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → 𝑥 ∈ ℝ)
48 cau3lem.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
4938, 45, 39, 40, 47, 48syl122anc 1327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5044, 49sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5150expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5251impr 647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒𝜃)) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5352an32s 842 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒𝜃)) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5453anassrs 678 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) ∧ 𝜃) → ((𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5554expimpd 627 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → ((𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5655ralimdv 2946 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ 𝜒) → (∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
5756impr 647 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5857an32s 842 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ (𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)
5958expr 641 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
60 uzss 11584 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
61 ssralv 3629 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6359, 62sylan9 687 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝜓) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6463an32s 842 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝜓) → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6564expimpd 627 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6665ralimdva 2945 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2)))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
6766ex 449 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6867com23 84 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
6968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜓 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7014, 69syl5bir 232 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜓 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7170expdimp 452 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ((𝜒 ∧ ∀𝑚 ∈ (ℤ𝑗)(𝜃 ∧ (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) < (𝑥 / 2))) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7237, 71mpdd 42 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7313, 72sylan2 490 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7473imdistanda 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
75 r19.26 3046 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)))
76 r19.26 3046 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
7774, 75, 763imtr4g 284 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7877reximdva 3000 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
7911, 78syld 46 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
8079ralrimdva 2952 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑧) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
814, 80syl5bi 231 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
82 fveq2 6103 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
8331oveq1d 6564 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝐹𝑘)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
8483fveq2d 6107 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))
8584breq1d 4593 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8682, 85raleqbidv 3129 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8786rspcv 3278 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
8887ad2antlr 759 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
89 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
9089oveq2d 6565 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑗)𝐷(𝐹𝑚)) = ((𝐹𝑗)𝐷(𝐹𝑘)))
9190fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))))
9291breq1d 4593 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥))
9392cbvralv 3147 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥)
9434anim2i 591 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓)) → (𝜑𝜒))
9594anassrs 678 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (𝜑𝜒))
96 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)𝜓)
97 cau3lem.5 . . . . . . . . . . . . . . 15 ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))
9897breq1d 4593 . . . . . . . . . . . . . 14 ((𝜑𝜒𝜓) → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
99983expia 1259 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝜓 → ((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10099ralimdv 2946 . . . . . . . . . . . 12 ((𝜑𝜒) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10195, 96, 100sylc 63 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
102 ralbi 3050 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
103101, 102syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10493, 103syl5bb 271 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑚 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10588, 104sylibd 228 . . . . . . . 8 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
10613, 105sylan2 490 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ𝑗)) ∧ ∀𝑘 ∈ (ℤ𝑗)𝜏) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
107106imdistanda 725 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑗)) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
10830, 107sylan2 490 . . . . 5 ((𝜑𝑗𝑍) → ((∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
109 r19.26 3046 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜏 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥))
110108, 76, 1093imtr4g 284 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
111110reximdva 3000 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
112111ralimdv 2946 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥)))
11381, 112impbid 201 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   < clt 9953   / cdiv 10563  2c2 10947  cz 11254  cuz 11563  +crp 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-z 11255  df-uz 11564  df-rp 11709
This theorem is referenced by:  cau3  13943  iscau3  22884
  Copyright terms: Public domain W3C validator